超高サイクル疲労への関心は国際的にも高く,2016年に開催された21st European Conference on Fracture - ECF21において“Fatigue crack initiation and propagation in gigacycle regime”と題してミニシンポジウムが開催されるなど,超高サイクル疲労における疲労き裂の発生ならびに初期進展といった現象に着目した基礎的な研究が世界的にも活性化している[40].また,同年にはInternational Journal of Fatigueにおいて超高サイクル疲労をテーマとしたSpecial Issueが刊行されている[41].さらに,1998年からほぼ3年おきに開催されているInternational Conference on Very High Cycle Fatigueの第7回(VHCF7)が2017年に開催される予定となっており,集中した議論が行われて当該分野の研究が大きく発展することが期待される[42].
最近は,長時間におけるクリープ破断延性低下にも関心が高い.クリープ破断延性低下はクリープ疲労寿命の低下につながる.Gr.92では,675,700℃で数万時間のクリープ破断試験を行うと断面減少率(Reduction of Area:RA)はほぼゼロとなること,降伏応力の1/2以下の低応力ではクリープ変形が結晶粒界近傍に集中するため650℃以下でもRA低下が顕著となることが報告されている[21].Gr.92では,介在物のBN,Al2O3,MnSがクリープボイドの生成サイトとなることが報告されている[22].ボロンや窒素濃度を調整してBNの生成を抑えると,RAが改善できることも報告されている[23].Gr.91にはボロンは添加されていないためBNは生成しないが,長時間でRAがGr.92ほどではないが低下する.微量元素P,S,Sn,As,Sb等によるGr.91のRA低下が報告されている[24, 25].
補修溶接の方法は多岐にわたり,補修溶接の施工時期も様々なため,一様な寿命評価は難しい.Gr.91補修溶接部から採取部位や補修時期の異なる様々な小型溶接継手試験片を採取してクリープ試験を行い,荷重方向,溶融線となす角度,材質(クリープ強度特性)に依存する寿命推定式が提案され,factor of 2の精度で推定可能なことが示され,実機を模擬した大型補修溶接継手のクリープ寿命推定にも適用されている[39].
21世紀の高度情報化時代,あるいはIoT(Internet of Things)時代を支える基幹製品は電子機器であり,電子部品のさらなる多機能化,高性能化が必要不可欠となっている.20世紀後半からの電子部品の微細化,高集積化動向の目覚ましさは論を待つに及ばない.ナノテクノロジーの発展に伴い微細加工技術は飛躍的に発展し,電子部品の加工精度はナノメートルのオーダに突入している.この構造微細化により電子部品の電子回路を構成するトランジスタやコンデンサ,抵抗等の要素デバイス寸法もナノメートルオーダーになっていることからそれらを接続する電気配線も同等の寸法にまで微細化されている.
T. Sakai, Review and Prospects for Current Studies on Very High Cycle Fatigue of Metallic Materials for Machine Structural Use, Journal of Solid Mechanics and Materials Engineering, Vol. 3, No. 3(2009), pp. 425–439, DOI: 10.1299/jmmp.3.425.
S. NISHIJIMA and K. KANAZAWA, Stepwise S–N curve and fish-eye failure in gigacycle fatigue, Fatigue & Fracture of Engineering Materials & Structures, Vol. 22(1999), pp. 601–607, DOI: 10.1046/j.1460-2695.1999.00206.x.
Y. Murakami, T. Nomoto, T. Ueda, Factors influencing the mechanism of superlong fatigue failure in steels, Fatigue & Fracture of Engineering Materials & Structures, Vol. 22(1999), pp. 581–590, DOI: 10.1046/j.1460-2695.1999.00187.x.
T. Sakai, T. Sato, N. Oguma, Characteristic S–N properties of high-carbon–chromium-bearing steel under axial loading in long-life fatigue, Fatigue & Fracture of Engineering Materials & Structures, Vol. 25(2002), pp. 765–773, DOI: 10.1046/j.1460-2695.2002.00574.x.
H. MATSUNAGA, C. SUN, Y. HONG and Y. MURAKAMI, Dominant factors for very-high-cycle fatigue of high-strength steels and a new design method for components, Fatigue & Fracture of Engineering Materials & Structures, Vol. 38(2015), pp. 1274–1284, DOI: 10.1111/ffe.12331.
T. SAKAI, N. OGUMA and A. MORIKAWA, Microscopic and nanoscopic observations of metallurgical structures around inclusions at interior crack initiation site for a bearing steel in very high-cycle fatigue, Fatigue & Fracture of Engineering Materials & Structures, Vol. 38(2015), pp. 1305–1314, DOI: 10.1111/ffe.12344.
H. Oguma, T. Nakamura, Formation Mechanism of Specific Fracture Surface Region in the Sub-Surface Fracture of Titanium Alloy, Advanced Materials Research, Vols. 891–892(2014), pp. 1436–1441, DOI: 10.4028/www.scientific.net/AMR.891-892.1436.
Yoshinaka, F., Nakamura, T., Nakayama, S., Shiozawa, D., Nakai, Y., Uesugi, K., Non-destructive observation of internal fatigue crack growth in Ti–6Al–4V by using synchrotron radiation μCT imaging, International Journal of Fatigue, Vol.93(2016), pp. 397–405, DOI: 10.1016/j.ijfatigue.2016.05.028.
Tatsuo Sakai, Shoichi Kikuchi, Yuki Nakamura and Noriyuki Ninomiya, A Study on Very High Cycle Fatigue Properties of Low Flammability Magnesium Alloy in Rotating Bending and Axial Loading, Experimental Mechanics and Effects of Intensive Loading, Applied Mechanics and Materials, Vol.782(2015), pp.27–41, DOI: 10.4028/www.scientific.net/AMM.782.27.
Daniel Backe, Frank Balle, Dietmar Eifler, Microstructural Characterization of Fatigue Damage of CFRP in the Very High Cycle Fatigue Regime, Advanced Composites for Aerospace, Marine, and Land Applications II(2016), pp. 325–334.
F. Abe, Research and development of heat-resistant materials for advanced USC power plants with steam temperatures of 700℃ and above, Engineering, Vol.1, No.2(2015), pp.211–224, DOI: 10.15302/J-ENG-2015031.
T. Hamaguchi, H. Okada, H. Semba, H. Hirata, A. Iseda and M. Yoshizawa, Development of high strength 9Cr-3W-3Co-Nb-B heat-resitant steel tube/pipe, Proc. of 1st Intern. Conf. on Advanced Technology for Sustainable and Reliable Power Engineering(123HiMAT-2015), June 30–July 3, 2015, Hokkaido University, Sapporo, Japan(2015), pp.114–117.
F. Abe, New martensitic steels, In “Materials for ultra-supercritical and advanced ultra-supercritical power plants”, edted by Augusto Di Gianfrancesco, Woodhead Publishing Limited, Cambridge UK,(2016)Chapter 10, pp. 323–374.
M. Fukuda et al., 700℃ A-USC technology development in Japan, Proc. of 8th EPRI Intern. Conf. on Advances in Materials Technology for Fossil Power Plants, October 11–14, 2016, Albufeira, Algarve, Portugal,(2016), pp.12–23.
“Materials for ultra-supercritical and advanced ultra-supercritical power plants”, edted by Augusto Di Gianfrancesco, Woodhead Publishing Limited, Cambridge UK,(2016)pp. 1–875.
F. Abe, Progress in creep-resistant steels for high efficiency coal-fired power plants, Trans. ASME, J. Press. Vessel Technol., Vol.138, No.3(2016), pp.040804-1–21, DOI: 10.1115/1.4032372.
K. Maruyama, H. Ghassemi Armaki, R.P. Chen, K. Yoshimi, M. Yoshizawa and M. Igarashi, Cr concentration dependence of overestimation of long term creep life in strength enhanced high Cr ferritic steels, Intern. J. Pressure Vessels & Piping, Vol.87(2010), pp.276–281, DOI: 10.1016/j.ijpvp.2010.03.012.
Y. Mito, K. Miki, T. Azuma, T. Ishiguro, O. Tamura, Y. Murata and M. Morinaga, rupture strength, Proc. of 7th EPRI Intern. Conf. on Advances in Materials Technology for Fossil Power Plants, Waikoloa, Hawaii, USA: ASM International,(2013), pp.627–636.
K. Sawada, H. Kushima, K. Kimura and M. Tabuchi, TTP Diagrams of Z phase in 9–12% Cr heat-resistant steels, ISIJ Intern., Vol.47, No.5(2007), pp.733–739, DOI: 10.2355/isijinternational.47.733.
F. Abe, Heat-to-heat variation in long-term creep strength of some ferritic steels, Intern. J. Pressure Vessels & Piping, Vol.87(2010), pp.310–318, DOI: 10.1016/j.ijpvp.2010.03.014.
K. Kimura and K. Sawada, Creep rupture ductility drop in the long-term of creep strength enhanced ferritic steels, Proc. of 1st Intern. Conf. on Advanced Technology for Sustainable and Reliable Power Engineering(123HiMAT-2015), June 30–July 3, 2015, Hokkaido University, Sapporo, Japan(2015), pp.110–113.
Y. Gu, G.D. West, R.C. Thomson and J. Parker, Investigation of creep damage and cavitation mechanisms in P92 steels, Proc. of 7th Intern. Conf. on Advances in Materials Technology for Fossil Power Plants, Waikoloa, Hawaii, USA, ASM International(2013), pp. 596–606.
F. Abe, New development on boron metallurgy of creep-resistant 9%Cr steel for USC power plant at 650℃, Proc. of Intern. Conf. on New Development on Metallurgy and Applications of High Strength Steels, Buenos Aires, Argentina, May 26–28(2008), pp.385–398.
J. Parker, J. Siefert and J. Shingledecker, The benefits of improved control of composition of creep strength enhanced ferritic steel Grade 91, EPRI Report, Program 87 Fossil Materials and Repair,(2014), pp.1–20.
F. Masuyama and T. Yamaguchi, Chemical specification and design factor consideration for creep degradation in grade 91 steel, Proc. of ASME PVP 2016 Conference, July 17–21, 2016, Vancouver, Canada,(2016), PVP2016-63307.
K. Kimura, Creep strength analysis of Gr.91, Presentation at WG Creep Strength Enhanced Ferritic Steels, ASME Boiler & Pressure Vessel Code Committee, November 6, St. Louis,(2016).
K. Maruyama, J. Nakamura, N. Sekido and K. Yoshimi, Causes of heat-to-heat variation of creep strength in grade 91 steel, Mat. Sci. Eng. A, Vol. 696(2017), pp.104–112, DOI: 10.1016/j.msea.2017.04.050.
Y. Liu, S. Tsukamoto, T. Shirane and F. Abe, Formation mechanism of type IV failure in high Cr ferritic heat-resistant steel-welded joint, Metall. Mater. Trans. A, Vol.44, No.10(2013), pp.4626–4633, DOI: 10.1007/s11661-013-1801-0.
Y. Liu, S. Tsukamoto, K. Sawada and F. Abe, Role of boundary strengthening on prevention of type IV failure in high Cr ferritic heat-resistant steels, Metall. Mater. Trans. A, 45A, No.3(2014), pp.1306–1314, DOI: 10.1007/s11661-013-2072-5.
H. Hongo, M. Tabuchi, and T. Watanabe, Type IV creep damage behavior in Gr.91 steel welded joints, Metall. Mater. Trans. A, Vol.43A, No.4(2012), pp.1163–1173, DOI: 10.1007/s11661-011-0967-6.
M. Yaguchi, T. Ogata and T. Sakai, Creep strength of high chromium steels welded parts under multiaxial stress conditions, Int. J. Pres. Ves. Pip., Vol.87(2010), pp.357–364, DOI: 10.1016/j.ijpvp.2010.03.018.
T.H. Hyde, M. Saber and W. Sun, Creep crack growth data and prediction for a P91 weld at 650℃, Int. J. Pres. Ves. Pip., Vol.87(2010), pp.721–729, DOI: 10.1016/j.ijpvp.2010.09.002.
M. Yaguchi, K. Nakamura and S. Nakahashi, Re-evaluation of long-term creep strength of welded joint of ASME Grade 91 type steel, Proc. of ASME 2016 PVP Conference, PVP2016, July 17–21(2016), Vancouver, British Columbia, Canada, PVP2016-63316.
K. Kobayashi, K. Yoshida, K. Yoshida and M. Yatomi, Nucleation and development of creep voids of P91 steel under multi-axial stress, Proc. of HIDA-6 Conference, Ed. By A. Shibli, 2–4 December 2013, Nagasaki, Japan,(2013), CD-ROM.
F. Abe, Grade 91 heat-resistant martensitic steel, In “Coal Power Plant Materials and Life Assessment”, edted by Ahmed Shibli, Woodhead Publishing Limited, Cambridge UK,(2014)pp. 3–51.
W. Bendick, L. Cipolla, J. Grabel and J. Hald, New ECCC assessment of creep rupture strength for steel Grade X10CrMoVNb9-1(Grade 91), Intern. J. Pressure Vessels & Piping, Vol.87(2010), pp.304–309, DOI: 10.1016/j.ijpvp.2010.03.010.
B. Wilshire and P.J. Scharning, A new methodology for analysis of creep and creep fracture data for 9–12% chromium steels, Intern. Mat. Rev., Vol.53, No.2(2008), pp.91–104, DOI: 10.1179/174328008X254349.
K. Kimura and M. Yaguchi, Re-evaluation of long-term creep strength of base metal of ASME Grade 91 type steel, Proc. of ASME 2016 PVP Conference, PVP2016, July 17–21(2016), Vancouver, British Columbia, Canada, PVP2016-63355.
K. Maruyama, J. Nakamura and K. Yoshimi, Assessment of long-term creep rupture strength of T91 steel by multi-region rupture data analysis, ASME J. Pressure Vessel Technol., Vol.138, No.3(2016), pp.031407-1–9.
M. Prager and F. Masuyama, Examination of the effect of materials variables in advanced alloys by studying creep deformation behavior, Proc. of Tenth Intern. Conf. on the Strength of Materials, August 21–26, 1994, Sendai, Japan,(1994), pp.575–578.
Nonaka, Proposal of creep residual life prediction procedure for Mod.9Cr-1Mo steel based on omega method, Proc. of 3rd Intern. ECCC Conf. on Creep & Fracture in High temperature Components & Life Assessment, May 5–7, 2014, Rome, Italy,(2014), Paper No. 36, pp.1–8.
K. Maruyama, J. Nakamura, K. Yoshimi and Y. Nagae, Evaluation of long-term creep rupture life of Gr.91 steel by analysis of on-going creep curves, Proc. of 8th EPRI Intern. Conf. on Advances in Materials Technology for Fossil Power Plants, October 11–14, 2016, Albufeira, Algarve, Portugal,(2016), pp.467–478.
H. Semba, B. Dyson and M. McLean, Microstructure-based creep modelling of a 9% Cr martensitic steel, Proc. of Intern. Conf. on Creep & Fracture in High Temperature Components, September 12–14, 2005, London, UK(2005), pp.419–427.
R. Lim, M. Sauzay, F. Dalle, I. Tournie, P. Bonnaillie, A.-F. Gourgues-Lorenzon, Modelling and experimental study of the tertiary creep stage of Grade 91 steel, Int. J. Fract., Vol.169(2011), pp.213–228, DOI: 10.1007/s10704-011-9585-y.
Takaki S., Nanba S., Imakawa K., Macadre A., Yamabe J., Matsunaga H., Matsuoka S., Determination of hydrogen compatibility for solution-treated austenitic stainless steels based on a newly proposed nickel-equivalent equation, International Journal of Hydrogen Energy, Vol. 41(2016)15095–15100, DOI: 10.1016/j.ijhydene.2016.06.193.
Matsunaga H., Yoshikawa M., Kondo R., Yamabe J., Matsuoka S., Slow strain rate tensile and fatigue properties of Cr-Mo and carbon steels in a 115 MPa hydrogen gas atmosphere, Internatonal Journal of Hydrogen Energy, Vol. 40(2015)5739–5748, DOI: 10.1016/j.ijhydene.2015.02.098.
Nibur KA, Somerday BP, Marchi CS, Foulk III JA, Dadfarnia M, Sofronis P. The relationship between crack-tip strain and subcritical cracking thresholds for steels in high-pressure hydrogen gas. Metall Mater Trans A, Vol. 44, Issue 1(2013)pp. 248–269, DOI: 10.1007/s11661-012-1400-5.
2017 International Colloquium on Environmentally Preferred Advanced Generation(2017 ICEPAG), Grid evolution global summit “HYDROGEN”, University of California, Irvine, 28–29 March, 2017. http://www.apep.uci.edu/ICEPAG2017/html/default.aspx(参照日2017年3月28日).
ASME Boiler & Pressure Vessel Code, Sec. VIII, Construction of Pressure Vessel, Div. 3, Alternate Rules High Pressure Vessels, Article KD-10,(2010), Special Requirements for Vessels in High Pressure Gaseous Hydrogen Transport and Storage Service.
Yamabe, J., Matsunaga, H., Furuya, Y., Hamada, S., Itoga, H., Yoshikawa, M., Takeuchi, E. and Matsuoka, S., Qualification of chromium-molybdenum steel based on the safety factor multiplier method in CHMC1-2014, Int. J. Hydrogen Energy, 40(2015), 719–728, DOI: 10.1016/j.ijhydene.2014.10.114.
Murata N., Saito, N., Tamakawa, K., Suzuki, K., Miura, H., Effect of Crystallographic Quality of Grain Boundaries on Both Mechanical and Electrical Properties of Electroplated Copper Thin Film Interconnections, J. Electron. Package 137(3), 031001, DOI: 10.1115/1.4029931.
Saito, N., Murata, N., Tamakawa, K., Suzuki, K., Miura, H., Evaluation of the crystallinity of grain boundaries of electronic copper thin films for highly reliable interconnections, IEEE, DOI: 10.1109/ECTC.2012.6248981.
Murakoshi, T., Shinozaki, T., Suzuki, K., Miura, H., Initial Degradation Process of Heat-resistant Materials Based on the Change of Crystallinity of Grains and Grain Boundaries, Procedia Structural Integrity, Vol. 2,(2016), pp. 1383–1390, DOI: 10.1016/j.prostr.2016.06.176.
Nakanhisi, T., Suzuki, K., Miura, H., Variation of the Strength of Grains and Grain Boundaries Caused by the Fluctuation of Their Crystallinity, ASME 2016 International Mechanical Engineering Congress and Exposition, Volume 9: Mechanics of Solids, Structures and Fluids, DOI: 10.1115/IMECE2016-67557.
Kato T., Suzuki, K., Miura, H., Crystallinity-Induced Degradation of the Lifetime of Advanced Interconnections, ASME 2016 International Mechanical Engineering Congress and Exposition, Volume 10: Micro- and Nano-Systems Engineering and Packaging, DOI: 10.1115/IMECE2016-67619.
Goshima, Y., Fujii, T., Inoue, S., and Namazu, T., Influence of 700℃ vacuum annealing on fracture behavior of micro/nanoscale focused ion beam fabricated silicon structures, Japanese Journal of Applied Physics vol. 55, 06GL03(2016), pp. 1–6, DOI: 10.7567/JJAP.55.06GL03.
Wang, L., Liu, Q., Shen, S., Effects of void–crack interaction and void distribution on crack propagation in single crystal silicon, Engineering Fracture Mechanics vol. 146(2015)pp. 56–66, DOI: 10.1016/j.engfracmech.2015.07.021.
Kamiya, S., Udhayakumar, A., Izumi, H., Koiwa, K., Shear stress enhanced fatigue damage accumulation in singlecrystalline silicon under cyclic mechanical loading, Sensors and Actuators A244,(2016), pp. 314–323, DOI: 10.1016/j.sna.2016.04.012.
Hirakata, H., Kameyama, T., Kotoge, R., Kondo, T., Sakihara, M., Minoshima, K., Creep crack propagation in gold submicron films at room temperature, International Journal of Fracture, vol. 201(2016)pp. 127–141, DOI: 10.1007/s10704-016-0104-z.
Wang, X., Yan, Y., Wan, Q., Sumigawa, T., Kitamura, T., A Nano-Cantilever Method for Crack Initiation at the Free Edge of the Cu/Si Interface in Nanoscale Components, Acta Mechanica Solida Sinica, Vol. 29,(2016), pp. 416–428, DOI: 10.1016/S0894-9166(16)30244-0.
Zou, Y., Kuczera, P., Sologubenko, A., Sumigawa, T., Kitamura, T., Steurer W., and Spolenak, R., Superior room-temperature ductility of typically brittle quasicrystals at small sizes, Nature communications, vol. 7, 12261(2016), DOI: 10.1038/ncomms12261.
Gallo, P., Sumigawa, T., Kitamura, T., Berto, F., Evaluation of the Strain Energy Density control volume for a nano-scale singular stress field, Fatigue & Fracture of Engineering Materials & Structures, vol. 39,(2016), pp. 1557–1564, DOI: 10.1111/ffe.12468.
Ohnishi, M., Suzuki, K., Miura, H., Effects of uniaxial compressive strain on the electronic-transport properties of zigzag carbon nanotubes, Nano Research, Vol. 9,(2016), pp. 1267–1275, DOI: 10.1007/s12274-016-1022-0.
Araneo, R., Rinaldi, A., Notargiacomo, A., Pea, M., Celozzi, S., Advanced mechanical and electrical characterization of piezoelectric ZnO nanowires for electro-mechanical modeling of enhanced performance sensors, Sensors and Actuators A244(2016), pp.166–173, DOI: 10.1016/j.sna.2016.04.031.
Upadrashta, D., Yang, Y., Experimental investigation of performance reliability of macro fiber composite for piezoelectric energy harvesting applications, Sensors and Actuators A244,(2016), pp. 223–232, DOI: 10.1016/j.sna.2016.04.043.
Siukonen, S.E., Daimon, T., Tohmyoh, H., Multi-layered microwire with a bi-metal tip for thermoelectric applications, Applied Thermal Engineering, Vol. 107,(2016), pp. 747–749, DOI: 10.1016/j.applthermaleng.2016.07.041.
Tohmyoh, H., Daimon, T., A plate-type thermoelectric power generator with an oxidized bi-metal interface for power generation from a small temperature difference, Microelectronic Engineering, Vol. 159,(2016), pp. 38–41, DOI: 10.1016/j.mee.2016.02.030.