TOPICS

キャビテーション噴流による材料改質の予測法

1.はじめに

キャビテーション噴流は. 材料の洗 浄・切断・改質といった用途で幅広く 活用されている。キャビテーション気 泡を含む高速水流を材料に衝突させる と、材料の表面近傍で気泡が崩壊し、 高い衝撃圧を生じる. この衝撃圧は 1GPa オーダにも達することが知られ ており、その衝撃エネルギーによって 材料の洗浄・切断・改質等が促進され る. これまで日立 GE ニュークリア・ エナジー(株)と(株)日立製作所は, 『ウォータジェットピーニング』とい う呼称でキャビテーション噴流による 材料改質を原子力発電プラントの予防 保全に応用してきた⁽¹⁾.ここでは、数 値流体解析に基づく最新の材料改質予 測法について解説する.

2. 材料改質による応力腐食割れ の抑制

金属材料の溶接部には引張残留応力 が生じ、材料の鋭敏化・腐食環境との 重畳によって応力腐食割れが発生する 場合がある.しかし,水中でキャビテー ション噴流を溶接部周辺に衝突させる と、気泡崩壊時の衝撃エネルギーの作 用で残留応力が正の値(引張側)から 負の値(圧縮側)に変換され、応力腐 食割れを抑制できる.このため、キャ ビテーション噴流によって材料にどの 程度の残留応力を付与できるか知るこ とが重要である.

そこで、従来はあらかじめ引張残留 応力を付与した試験体にキャビテー ション噴流を噴射し、X線回折法によ る圧縮残留応力の計測を実施してき た.しかし、数値流体解析で衝撃エネ ルギーを予測し、その衝撃エネルギー と圧縮残留応力との間に高い相関性が 確認できれば、数値流体解析による圧 縮残留応力の予測が可能となる.次章 では、開発した数値流体解析技術につ いて説明する.

3. 数値流体解析による圧縮残留 応力の予測

著者らは、気泡流モデルを用いた数 値流体解析コードを開発してきた⁽²⁾. 本解析コードでは,流れ場中において マイクロ秒の時間スケールで急激に膨 張・収縮する多数の気泡運動の予測が 可能である.気泡収縮時に生じる高い 内部圧力とその発生位置を予測するこ とで,気泡崩壊時の衝撃エネルギーの 分布の見積もりを可能とした.

図1には、原子炉内部の機器を模擬した円柱状構造物に対し、キャビ テーション噴流が斜めに衝突する場合 の解析結果を示す.ノズルから噴射さ れたキャビテーション噴流は構造物に 衝突した後、構造物の壁面に沿って下 流側に広がる.図1(a)はキャビテー ション噴流中の主流部分において、多 数のキャビテーション気泡の内部が高 圧になっていることを表している.ま た、図1(b)は構造物の壁面上にお ける衝撃エネルギーの予測結果であ り、噴流が構造物の壁面に衝突する点 〇付近からその下流側にかけてエネル ギーが高い領域が分布している.

ノズルや構造物の形状、ノズルの構 造物に対する距離や角度、噴流の流速、 ノズル移動の有無や噴射時間等を変え た20ケースの条件において、解析で 得られた衝撃エネルギーと計測した圧 縮残留応力を比較した結果、両者に高 い相関性が確認されるとともに、衝撃 エネルギーを圧縮残留応力に換算する 式が得られた⁽³⁾.この換算式を用い、 図1(b)の衝撃エネルギーを圧縮残 留応力に換算した結果を図2に示す. 図2では、図1(b)中に示した検査 線上の圧縮残留応力値を示しており、 検査線は噴流衝突点0を原点として 構造物の壁面に沿って設けられている.

図2より,キャビテーション噴流 の噴射前は噴流衝突点Oと点Bの間 で約445~525MPaであった引張残留 応力が,噴射後は約-435~-400MPa の圧縮残留応力に変換されている.ま た,点OA間では点AB間に比べて 大きい圧縮残留応力が付与されてい る.一方,解析結果も計測結果と同様 に圧縮残留応力は噴流衝突点に近いほ ど大きく,予測精度は約±100MPa以

内である.このように,数値流体解析 に基づき,材料の残留応力改善予測が 可能となってきている.

4. おわりに

キャビテーション噴流を有効利用し た材料改質に関し,数値流体解析を用 いた最新の圧縮残留応力予測法を紹介 した.本手法を活用して原子力発電プ ラントの予防保全を効率的に進め,今 後も社会インフラの信頼性向上に貢献 していく.また,他分野への展開も図っ ていきたい.

(原稿受付 2013年2月10日)(深谷征史 (株)日立製作所〕

●文 献

- Fukaya, M., ほか, Mitigation of Stress Corrosion Cracking Based on Residual Stress Improvement by Water Jet Peening (WJP), ASME 2011 Pressure Vessels & Piping Division Conference, (2011), PVP2011-57493.
- (2) Fukaya, M., ほか, Prediction of Cavitation Intensity and Erosion Area in Centrifugal Pump by Using Cavitating Flow Simulation with Bubble Flow Model, *Journal of Fluid Science and Technology*, 5-2 (2010), 305-316.
- (3) 深谷征史・ほか、気泡流モデルキャビテーション噴流解析によるウォータージェット ピーニング後の平板表面の圧縮残留応力予測、キャビテーションに関するシンポジウム(第16回)、(2012-11)、S2-8.