TOPICS

放電加工による極小径切削工具の製作

1. はじめに

微細加工の需要の高まりにより、切 削工具も小径化が進められている. 現 在. ねじれ刃エンドミルでは直径 30μm, ツイストドリルでは直径 10μm までの極小径工具が開発されている. フラットドリルのような単純形状にな るが, さらに小径の切削工具の開発例 も報告されている.しかし,極小径工 具は製作難度が高いので、1本数万円 の価格になるものもあり、より簡易な 工具製作法が望まれる. そこで, 本稿 では放電加工を用いた極小径切削工具 の製作について紹介する.

2. 放電加工による切削工具の製 作

放電加工は放電生成熱による非接触 除去加工なので、工作物材料の硬さに よらず加工が可能であり, 工具や工作 物に作用する機械的加工力も微小であ る. さらに. 放電エネルギーを小さく

することにより、材料除去単位も微小 にできる. したがって, 高硬度かつ小 寸法を有する極小径切削工具の製作に 適した加工法である.

放電加工法のうち、極小径形状の加 工にはワイヤ放電研削⁽¹⁾(Wire Electrodischarge Grinding: WEDG) が適 している. WEDG はワイヤを工具電 極に用いるが、一般のワイヤ放電加工 と異なり, ワイヤが放電発生部分でガ イドに支持されている. それによりワ イヤ振動が抑制されるので、加工精度 が向上し, 直径数 µm の丸棒加工が容 易に行える.

図1に製作した超硬合金工具の例 を示す. これは直径 17µm の半月形工 具であり, 直径 0.3mm の線材から 10min 程度で製作されたものである. 底刃に加えて外周刃も有しているの で、穴加工のみならず溝加工も可能で ある. 現在, 直径 3_m までの工具の

試作に成功している.

図2は、直径 15µm のダイヤモンド 工具および CBN (Cubic Boron Nitride) 工具である. いずれも焼結材 料を用いたもので、導電性が高く放電 加工による製作が可能である. これら の材料は超高硬度なので、研削加工を 中心とした従来の手法では製作時間が 長くなるが、放電加工では超硬合金の 場合と大差はない.

3. 製作した工具による切削加工

次に、製作された極小径工具で実際 に切削加工を試みた. 小径工具は折損 しやすいので,超音波加振を援用した. 工作物を鉛直方向(工具軸方向)に加 振することにより, 切削抵抗が減少す るので工具折損を抑制しやすくなる.

以降に加工例を示す. 図3は. 快 削黄銅に対して,直径 5μm の工具を 用いて多数個の微細穴加工を行った例 である. **図 4** は, 直径 3μm の工具を 用いて同じく快削黄銅に開けられた内 径 4μm の微細穴である. この加工例 は、筆者の知る限りでは、切削加工に よりあけられたものとしては最小径と 思われる.

図5は,幅20µmの溝加工例を示し ている. 工作物材料はシリコンである. 軸方向の切込みを 0.2µm と微小に設 定することにより、 脆性材料のシリコ ンに対してもクラックを発生させずに 延性モードで切削加工を行うことが可 能であった. 図6は快削黄銅に加工 された幅 4µm の微細溝である. この 例も, 回転切削工具により加工された ものとしては最小幅と思われる.

半月形工具はバイトとしても使用で きる.図7は,直径 0.3mm の小径黄 銅パイプに対して、中ぐり加工と正面 旋削による溝入れ加工を行った例であ る.

4. おわりに

放電加工により製作された極小径切 削工具および、それらを使用した加工 例を紹介した. 放電加工を用いれば高 硬度の極小径工具でも簡易に製作が可 能で、表面粗さやマイクロクラックな どの加工面性状の問題を改善できれ ば、新たな切削工具製作法として広く 用いられるようになると考えられる. (原稿受付 2009年12月21日)

〔江頭 快 京都工芸繊維大学〕

●文 献

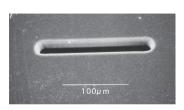
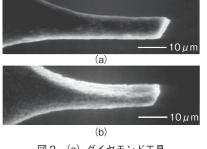

(1) 増沢隆久・藤野正俊、ワイヤ放電研削によ る細軸加工とその応用, 生産研究, 37-11 (1985), 29-34.

図1 製作された超硬合金工具


図3 直径5μmの工具による微細穴加工例

シリコンへの微細溝加工例 【軸方向切込み 0.2 μ m, 水平方向送り速度 10 μ m/S)

図6 幅4μmの微細溝加工例 (軸方向切込み 0.5 μ m 水平方向送り速度 3.0 μ m/S)

(a) ダイヤモンド工具 図 2 (b) CBN 工具

図4 内径4μmの微細穴加工例 (工具回転数 50rps, 送り速度 0.15 $\mu \, \text{m/S})$

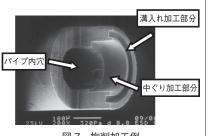


図7 旋削加工例