(1) Wits, W. W. and Amsterdam, C., Fatigue prediction and life assessment method for metal laser powder bed fusion parts, CIRP Annals, , Manufacturing Technology, Vol.72, No.1 (2023), pp.129-132.
(2) Guo, L., Wang, H., Liu, H., Huang, Y., Wei, Q., Leung, C. L. A., Wu, Y., and Wang, H., Understanding keyhole induced-porosities in laser powder bed fusion of aluminum and elimination strategy, International Journal of Machine Tools and Manufacture, Vol.184 (2023), DOI:10.1016/j.ijmachtools.2022.103977.
(3) Guo, L., Liu, H., Wang, H., Wei, Q., Xiao, Y., Tang, Z., Wu, Y., Haowei, H., Wang, Identifying the keyhole stability and pore formation mechanisms in laser powder bed fusion additive manufacturing, Journal of Materials Processing Technology, Vol.321 (2023), DOI:10.1016/j.jmatprotec.2023.118153.
(4) Anand, N., Chang, K. C., Yeh, A. C., Chen, Y. B., and Lee, M. T., Development of a comprehensive model for predicting melt pool characteristics with dissimilar materials in selective laser melting processes, Journal of Materials Processing Technology, Vol.319 (2023), DOI:10.1016/j.jmatprotec.2023.118069.
(5) Fox, J. C., Evans, C. J., Weavera, J. S., Redford, J. K., Surface topography and melt pool behavior in rapid turnaround regions of laser powder bed fusion additive manufacturing of nickel superalloy625, CIRP Annals, , Manufacturing Technology, Vol.72, No.1 (2023), pp.193-196.
(6) Yang, H., Sha, J., Zhao, D., He, F., Ma, Z., He, C., Shi, C., and Zhao, N., Defects control of aluminum alloys and their composites fabricated via laser powder bed fusion: A review, Journal of Materials Processing Technology, Vol.319 (2023), DOI:10.1016/j.jmatprotec.2023.118064.
(7) Li, Z., Takano, N., and Mizutani, M., Material properties of selective laser melting additive-manufactured Ti6Al4V alloys with different porosities, Precision Engineering, Vol.83 (2023), pp,142-151.
(8) Croom, B. P., Koshute, P., Gienger, E. B., McCue, I. D., Peitsch, C., Mines, J. M., Price, S., Carter, R., Mueller, R. K., Rettaliata, J., and Presley, M., Contributions of porosity and laser parameter drift to inter-build variation of mechanical properties in additively manufactured 316 L stainless steel, Journal of Materials Processing Technology, Vol.317 (2023), DOI:10.1016/j.jmatprotec.2023.117998.
(9) Narra, S. P., Rollett, A. D., Ngo, A., Scannapieco, D., Shahabi, M., Reddy, T., Pauza, J., Taylor, H., Gobert, C., Diewald, E., Dugast, F. X., To, A., Wicker, R., Beuth, J., and Lewandowski, J. J., Process qualification of laser powder bed fusion based on processing-defect structure-fatigue properties in Ti-6Al-4V, Journal of Materials Processing Technology, Vol.311 (2023), DOI:10.1016/j.jmatprotec.2022.117775.
(10) Morishita, K., Yamaguchi, T, Wada, K, and Yamabe, J., Technique for Introducing Internal Defects with Arbitrary Sizes and Locations in Metals via Additive Manufacturing and Evaluation of Fatigue Properties, International Journal of Automation Technology, Vol.17, No.4 (2023), pp.378-387.
(11) Zhao, Y., He, J., Li, B., Gao, Z., Guo, Q., Ma, Z., and Liu, Y., The role of ceramic particles on the crack inhibition and mechanical properties improvement of Haynes 230 alloy fabricated by laser powder bed fusion, Journal of Materials Processing Technology, Vol.320 (2023), DOI:10.1016/j.jmatprotec.2023.118124.
(12) Fryzowicz, K., Dziurka, R., Bardo, R., Marciszko-Wiąckowska, M., and Bała, P., Point-by-point laser exposure for crack susceptibility reduction in Powder Bed Fusion processing of H11 tool steel, Journal of Materials Processing Technology, Vol.316 (2023), DOI:10.1016/j.jmatprotec.2023.117946.
(13) Yim, S., Aoyagi, K., Bian, H., Yanagihara, K., Lei, Y., Kitamura, S., Manabe, H., Daino, Y., Yamanaka, K., and Chiba, A., Cracking behavior of Ti-48Al-2Cr-2Nb alloy in powder bed fusion electron beam melting process, Journal of Materials Processing Technology, Vol.320 (2023), DOI:10.1016/j.jmatprotec.2023.118104.
(14) Pandiyan, V., Wr´obel, R., Leinenbach, C., and Shevchik, S., Optimizing in-situ monitoring for laser powder bed fusion process: Deciphering acoustic emission and sensor sensitivity with explainable machine learning, Journal of Materials Processing Technology, Vol.321 (2023), DOI:10.1016/j.jmatprotec.2023.118144.
(15) Chebil, G., Bettebghor, D., Renollet, Y., Lapouge, P., Davoine, C., Thomas, M., Favier, V., and Schneider M., Deep learning object detection for optical monitoring of spatters in L-PBF, Journal of Materials Processing Technology, Vol.319 (2023), DOI:10.1016/j.jmatprotec.2023.118063.
(16) Ezura, A., Abe, S., Furumoto, T., Sasaki, T., Sakamoto, J., Study on laser scan strategy for correcting anisotropic residual stress distribution and reducing warpage in structures fabricated by PBF-LB/M, International Journal of Automation Technology, Vol.17, No.4 (2023), pp.369-377.
(17) Cao, Y., Moumni, Z., Zhu, J., Gu, X., Zhang, Y., Zhai, X., and Zhang, W., Effect of scanning speed on fatigue behavior of 316L stainless steel fabricated by laser powder bed fusion, Journal of Materials Processing Technology, Vol.319 (2023), DOI:10.1016/j.jmatprotec.2023.118043.
(18) Fischmann, P., and Zanger, S. F. S., Influence of particle size distribution on surface roughness in powder bed fusion – A contribution to increase resource efficiency, CIRP Annals, Manufacturing Technology, Vol.72 (2023), pp.145-148.
(19) Andreiev, A. Hoyer, K. P., Hengsbach, F., Haase, M., and Tasche, L., Kristina Duschik d, Mirko Schaper, Powder bed fusion of soft-magnetic iron-based alloys with high silicon content, Journal of Materials Processing Technology, Vol.319 (2023), DOI:10.1016/j.jmatprotec.2023.117991.
(20) Zheng, R., Li, S. F., Misra, R. D. K., Kondoh K., and Yang, Y. F., Role of W in W-coated Cu powder in enhancing the densification-conductivity synergy of laser powder bed fusion built Cu component, Journal of Materials Processing Technology, Vol.322 (2023), DOI:10.1016/j.jmatprotec.2023.118169.
(21) Wang, Q. Z., Kang, N., Lin, X., Mansori, M. EL., Liu, Y., Lu, J. L., Wang, Y. F., Chai, H. Z., and Huang, W. D., On the Si-induced microstructure evolution, solidification cracking healing and strengthening behavior of laser powder bed fusion additive manufactured Al-Cu-Mg/Si alloys, Journal of Materials Processing Technology, Vol.313 (2023), DOI:10.1016/j.jmatprotec.2023.117860
(22) Yang, C., Zhao, Z., Bai, P., Du, W., and Zhang, S., Nano-SiC whisker-reinforced Ti6Al4V matrix composites manufactured by selective laser melting: Fine equiaxed grain formation mechanism and mechanical properties, Journal of Materials Processing Technology, Vol.317 (2023), DOI:10.1016/j.jmatprotec.2023.117981.
(23) Ding, W., Tao, Q., Chen, J., Chen, G., Qu, X., and Qin, M., Enhanced mechanical properties by laser powder bed fusion using cost-effective hydride-dehydride titanium powders, Journal of Materials Processing Technology, Vol.313 (2023), DOI:10.1016/j.jmatprotec.2023.117887.
(24) 川口泰平, 初田光嶺, 篠崎貴宏, 山田岳史, SUS316L 水アトマイズ粉末を用いた押出機ダイプレートの積層造形, 日本機械学会論文集, Vol.89, No.925 (2023), DOI:10.1299/transjsme.23-00017
(25) Yamaguchi, M., Kushima, K., Ono, Y., Sugai, Y., Oyama, T., Furumoto, T., Humidity control in laser powder bed fusion using titanium alloy powder for quality assurance of built parts and reusability of metal powder, Journal of Materials Processing Technology, Vol.311 (2023), DOI:10.1016/j.jmatprotec.2022.117817.
(26) Yamaguchi, M., Tsubouchi, K., Kamimoto, A., Yamada, S., Sugiyama, K., and Furumoto, T., Influence of Oxygen Concentration in Building Environment and Oxidation Extent of Maraging Steel on Spatter Generation Behavior in Powder Bed Fusion, International Journal of Automation Technology, Vol.17, No.4 (2023), pp.346-355.
(27) Wang, L., Tan, Z., Wang, S., Liu, W., Hao, J., Zhang, X., Deng, S., Yu, C., Zheng, H., Zeng, Z., Lu, H., He, L., and Chen, J., Atomization gases dependent mechanical properties in the laser powder bed fusion manufactured 304L stainless steel, Journal of Materials Processing Technology, Vol.316 (2023), DOI:10.1016/j.jmatprotec.2023.117966.
(28) Yin, H., Wei, B., Shmatok, A., Yang, J., Salek, M. F., Beckingham, L., Prorok, B., Wang, J., and Lou, X., On the nanoscale oxide dispersion via in-situ atmospheric oxidation during laser powder bed fusion, Journal of Materials Processing Technology, Vol.322 (2023), DOI:10.1016/j.jmatprotec.2023.118191.
(29) Yoshida, M., Furumoto, T., Sakuma, K., Kawasaki, K., and Itagaki, K., Experimental investigation of spatter particle behavior and improvement in build quality in PBF-LB, International Journal of Automation Technology, Vol.17, No.4 (2023), pp.335-345.
(30) Zhong, W., Wei, K., Lu, Z., Yue, X., Ouyang, T., and Zeng, X., High power laser powder bed fusion of Inconel 718 alloy: Effect of laser focus shift on formability, microstructure and mechanical properties, Journal of Materials Processing Technology, Vol.311 (2023), DOI:10.1016/j.jmatprotec.2022.117824.
(31) Ikeshoji, T., Tachibana, Y., Yonehara, M., Kyogoku, H., Laser beam powder bed fusion of Inconel 718 under high power and scanning speed, Journal of Advanced Mechanical Design, Systems, and Manufacturing, Vol.17, No.6 (2023), pp.1-23.
(32) Soundarapandiyan, G., Leung, C. L. A., Johnston, C., Chen, B., Khan, R. H.U., McNutt, P., Bhatt, A., Atwood, R. C., Lee, P. D., and Fitzpatrick, M. E., In situ monitoring the effects of Ti6Al4V powder oxidation during laser powder bed fusion additive manufacturing, International Journal of Machine Tools and Manufacture, Vol.190 (2023), DOI:10.1016/j.ijmachtools.2023.104049.
(33) Weigold, M., and Merschroth, H., Investigation of temperature gradient and solidification rate in laser-based powder bed fusion using a high-speed camera to evaluate local microstructure characteristics, CIRP Annals, Manufacturing Technology, Vol.72 (2023), pp.197-200.
(34) Benzing, J. T., Derimow, N., Kafka, O. L., Hrabe, N., Schumacher, P., Godfrey, D., Beamer, C., Pathare, P., Carroll, J. D., Lu, P., Trujillo, I., and DelRio, F. W., Enhanced strength of additively manufactured Inconel 718 by means of a simplified heat treatment strategy, Journal of Materials Processing Technology, Vol.322 (2023), DOI:10.1016/j.jmatprotec.2023.118197.
(35) Beevers, E., Cutolo, A., Mertens, F., and Hooreweder, B. V., Unravelling the relation between Laser Powder Bed Fusion processing parameters and the mechanical behaviour of as built lattices in a novel Al–Cu–Mg–Ag–Ti–B alloy, Journal of Materials Processing Technology, Vol.315 (2023), DOI:10.1016/j.jmatprotec.2023.117915.
(36) Koike, R., AlKhaled, A., and Kashimoto, T., Basic study for lunar regolith powder bed fusion in high gravity, CIRP Annals, Manufacturing Technology, Vol.72 (2023), pp.125-128.
(37) 堀裕生, 古本達明, 千葉洋尚, 加藤直紀, 山口貢, 新川真人, 微小管付与による離型剤浸透金型の製作とダイカスト鋳造特性, 精密工学会誌, Vol.89, No.10 (2023), pp.790-794.
(38) Abe, S., Uemoto, S., and Morimoto, M., Advantages of InjectionMold with Hybrid Process of Metal Powder Bed Fusion and Subtractive Process, International Journal of Automation Technology, Vol.17, No.4 (2023), pp.388-397.
(39) Xing, Y., Luo, C., Zhu, M., Zhao, Y., Ehmann, K., W, Z., and Liu, L., Assessment of self-lubricating coated cutting tools fabricated by laser additive manufacturing technology for friction-reduction, Journal of Materials Processing Technology, Vol.318 (2023), DOI:10.1016/j.jmatprotec.2023.118010.
(40) Yang, H., Xu, Z., Peng, L., and Lai, X., High ductility and corrosion resistance chromium gradient stainless steel for fuel cell bipolar plates fabricated via laser powder bed fusion, Journal of Materials Processing Technology, Vol.317 (2023), DOI:10.1016/j.jmatprotec.2023.118002.
(41) Ikeda, Y., Okochi, W., Koike, R., Maki, T., Takaki, K., Mori, T., Hirono, Y., Kakinuma, Y., Mechanical property evaluation of the SLM support structure and lattice structure of SUS316L, Journal of Advanced Mechanical Design, Systems, and Manufacturing, Vol.17, No.1 (2023), DOI: 10.1299/jamdsm.2023jamdsm0015.
(42) Lia, B., Hanb, C., Xie, Y., Bartolo, P. J. D. S., and Zhou, K., Microstructural heterogeneity induced by thermal accumulation in a nickel–aluminum–bronze alloy additively manufactured via directed energy deposition, CIRP Annals, Manufacturing Technology, Vol.72 (2023), pp.133-136.
(43) Hentschel, O., Krakhmalev, P., Fredriksson, G., Olsen, J., Selte, A., and Schmidt, M., Influence of the in-situ heat treatment during manufacturing on the microstructure and properties of DED-LB/M manufactured maraging tool steel, Journal of Materials Processing Technology, Vol.315 (2023), DOI:10.1016/j.jmatprotec.2023.117928.
(44) Gao, Z., Zhan, X., Shi, H., Li, Y., Li, X., Liu, Z., and Wang, L., Mechanism of columnar to equiaxed to lamellar grain transition during wire-laser directed energy deposition 205 C aluminum alloy utilizing a coaxial head: Numerical simulation and experiment, Journal of Materials Processing Technology, Vol.322 (2023), DOI:10.1016/j.jmatprotec.2023.118208.
(45) Dai, G., Sun, Z., Li, Y., Jain, J., Bhowmik, A., Shinjo, J., Lu, J., and Panwisawas, C., Grain refinement and columnar-to-equiaxed transition of Ti6Al4V during additive manufacturing via different laser oscillations, International Journal of Machine Tools and Manufacture, Vol.189 (2023), DOI:10.1016/j.ijmachtools.2023.104031.
(46) Zhao, Y., Sun, W., Wang, Q., Sun, Y., Chen, J., Du, C., Xing, H., Li, N., and Tian, W., Effect of beam energy density characteristics on microstructure and mechanical properties of Nickel-based alloys manufactured by laser directed energy deposition, Journal of Materials Processing Technology, Vol.319 (2023), DOI:10.1016/j.jmatprotec.2023.118074.
(47) Zhao, P., Zhang, Y., Liu, W., Zheng, K., and Luo, Y., Influence mechanism of laser defocusing amount on surface texture in direct metal deposition, Journal of Materials Processing Technology, Vol.319 (2023), DOI:10.1016/j.jmatprotec.2022.117822.
(48) Liao, S., Jeong, J., Zha, R., Xue, T., and Cao, J., _Simulation-guided feedforward-feedback control of melt pool temperature in directed energy deposition, CIRP Annals, Manufacturing Technology, Vol.72 (2023), pp.157-160.
(49) Freeman, F., Chechik, L., Thomas, B., and Todd, I., Calibrated closed-loop control to reduce the effect of geometry on mechanical behaviour in directed energy deposition, Journal of Materials Processing Technology, Vol.311 (2023), DOI:10.1016/j.jmatprotec.2022.117823.
(50) Zhang, X., He, Y., Zhao, S., Ding, H., and Hu, Y., Innovative liquid metal strategy for real-time thermal control in additive manufacturing, Journal of Materials Processing Technology, Vol.319 (2023), DOI:10.1016/j.jmatprotec.2023.118166.
(51) Hirono, Y., Mori, T., Ueda, M., and Kono, D., Cracking suppression by substrate preheating using an induction heater in directed energy deposition, Journal of Advanced Mechanical Design, Systems, and Manufacturing, Vol.17, No.3 (2023) DOI:10.1299/jamdsm.2023jamdsm0039.
(52) Su, G., Shi, Y., Li, G., Zhang, G., and Xu, Y., Improving the deposition efficiency and mechanical properties of additive manufactured Inconel 625 through hot wire laser metal deposition, Journal of Materials Processing Technology, Vol.319 (2023), DOI:10.1016/j.jmatprotec.2023.118175.
(53) Nishiyama, A., Kayashima, S., Sumi, N., Hashimoto, T., Abe, T., and Kaneko, J. Process planning with removal of melting penetration and temper colors in 5-axis hybrid additive and subtractive manufacturing, International Journal of Automation Technology, Vol.17, No.4 (2023), pp.356-368.
(54) Wang, A., Wei, Q., Tang, Z,m Ren, P., Zhang, X., Wu, Y., Wang, H., Plessis, A. D., Huang, J., Hu, K., and Wang, H., Effects of processing parameters on pore defects in blue laser directed energy deposition of aluminum by in and ex situ observation, Journal of Materials Processing Technology, Vol.319 (2023), DOI:10.1016/j.jmatprotec.2023.118068.
(55) Cooper, C., Zhang, J., Huang, J., Bennett, J., Cao, J., Robert X. Gao, Tensile strength prediction in directed energy deposition through physics-informed machine learning and Shapley additive explanations, Journal of Materials Processing Technology, Vol.315 (2023), DOI:10.1016/j.jmatprotec.2023.117908.
(56) 岡本絵里香, 青山英樹, 上田真広, 山崎和夫, 指向性エネルギー堆積法による高精度・高効率・高品質造形システムの開発, 最適スタンドオフ距離を維持する自動造形システムと自動金型補修, 精密工学会誌, Vol.89, No.9 (2023), pp.714-720.
(57) Wang, Y., Li, J., Xia, X., Zou, L., Yuan, T., Liu, X., Lai, D., Deng, S., and Li, R., A novel Al-Cr-Sc-Zr alloy additively manufactured via laser directed energy deposition: Microstructure, phase analysis and mechanical properties, Journal of Materials Processing Technology, Vol.322 (2023), DOI:10.1016/j.jmatprotec.2023.118204.
(58) Zhang, F., Huang, K., Zhao, K., Tan H., Li, Y., Qiu, Y., Chen, Y., Wang, M., and Zhang, L. C., Directed energy deposition combining high-throughput technology and machine learning to investigate the composition-microstructure-mechanical property relationships in titanium alloys, Journal of Materials Processing Technology, Vol.311 (2023), DOI:10.1016/j.jmatprotec.2022.117800.
(59) Zheng, W., Zhang, D., Wu, D., Ma, N., and Geng, P., Effects of ceramic material in laser-directed energy deposition of titanium/ceramic functionally graded materials, Journal of Materials Processing Technology, Vol.317 (2023), DOI:10.1016/j.jmatprotec.2023.117992.
(60) Ikeda, Y., Takeuchi, T., Koike, R., Kakinuma, Y., and Kondo, M., Evaluation of fabrication parameters for foam stainless steel in directed energy deposition, Journal of Advanced Mechanical Design, Systems, and Manufacturing, Vol.17, No.1 (2023), DOI:10.1299/jamdsm.2023jamdsm0011.
(61) Ji, C., Li, K., Zhan, J., Bai, S., Jiang, B., and Murr, L. E., The effects and utility of homogenization and thermodynamic modeling on microstructure and mechanical properties of SS316/IN718 functionally graded materials fabricated by laser-based directed energy deposition, Journal of Materials Processing Technology, Vol.319 (2023), DOI:10.1016/j.jmatprotec.2023.118084
(62) Fan, W., Peng, Y., Qi, Y., Tan, H., Feng, Z., Wang, Y., Zhang, F., and Lin, X., Partially melted powder in laser based directed energy deposition: Formation mechanism and its influence on microstructure, International Journal of Machine Tools and Manufacture, Vol.192 (2023), DOI:10.1016/j.ijmachtools.2023.104072.
(63) Zhong, Y., Zheng, Z., Li, J., Wang, C., and Wang, X., Effects of Ar-N2-He shielding gas on microstructure, mechanical properties and corrosion resistance of the Laser-MIG additive manufacturing 316L stainless steel, Journal of Materials Processing Technology, Vol.312 (2023), DOI:10.1016/j.jmatprotec.2022.117844.
(64) Li, Z., Chang, B., Wang, K., Zhang, H., Liang, Z., Wang, L., Liu, C., and Du, D., Closed-loop control of alternating dual-electron beams for molten pool regulation during in-situ additive manufacturing, Journal of Materials Processing Technology, Vol.319 (2023), DOI:10.1016/j.jmatprotec.2023.118087.
(65) Li, X., Fang, X., Zhang, M., Zhang, H., Duan, Y., and Huang, K., Gradient microstructure and prominent performance of wire-arc directed energy deposited magnesium alloy via laser shock peening, International Journal of Machine Tools and Manufacture, Vol.188 (2023), DOI:10.1016/j.ijmachtools.2023.104029.
(66) Yuan, T., Xu, D., Jiang, X., Zhao, P., and Chen, S., Enhanced strength-plasticity of 2319 Al-Cu alloy formed by hybrid interlayer friction stir processing and wire-arc additive manufacturing, Journal of Materials Processing Technology, Vol.321 (2023), DOI:10.1016/j.jmatprotec.2023.118146.
(67) Guo, X., Ni, D., Li, H., Xue, P., Xu, R., Pan, Z., Zhou, S., and Ma, Z., Enhancing strength, ductility, and fatigue performance of Al-Zn-Mg-Cu-Sc-Zr alloy using a hybrid approach: Wire-arc directed energy deposition and interlayer friction stir processing, Journal of Materials Processing Technology, Vol.322 (2023), DOI:10.1016/j.jmatprotec.2023.118173.
(68) Yi, H., Wang, Q., Zhang, W., and Cao, H., Wire-arc directed energy deposited Mg-Al alloy assisted by ultrasonic vibration: Improving properties via controlling grain structures, Journal of Materials Processing Technology, Vol.321 (2023), DOI:10.1016/j.jmatprotec.2023.118134.
(69) Lyu, Z., Sato, Y. S., Xu, W., Li, S., Xu, Z., Hu, X., Li, X., and Zhu, Q., Simultaneous enhancements of strength and ductility of wire arc additive manufactured 17-4PH steel via intrinsic heat treatment, Journal of Materials Processing Technology, Vol.321 (2023), DOI:10.1016/j.jmatprotec.2023.118149.
(70) Li, S., Jiang, P., Gao, Y., Song, M., and Shu, L., A penetration depth monitoring method for Al-Cu laser lap welding based on spectral signals, Journal of Materials Processing Technology, Vol.317 (2023), DOI:10.1016/j.jmatprotec.2023.117972.
(71) Hummel, M., Hagenlocher, C., Haeusler, A., Hollatz, S., Lind, J., Olowinsky, A., Gillner, A., Beckmann, F., Moosmann, J., Weber, R., Graf, T., and Hafner, C., Analysis on the influence of vapor capillary aspect ratio on pore formation in laser beam welding of aluminum, Journal of Materials Processing Technology, Vol.312 (2023), DOI:10.1016/j.jmatprotec.2023.117862.
(72) Huang, W., Cai, W., Rinker, T. J., Bracey, J., and Tan, W., Effects of laser oscillation on metal mixing, microstructure, and mechanical property of Aluminum–Copper welds, International Journal of Machine Tools and Manufacture, Vol.188 (2023), DOI:10.1016/j.ijmachtools.2023.104020.
(73) Liu, Z., Zhang, D., Jin, X., and Yu, C., Suppression of deformation and enhancement of weld properties in thin stainless steel using synchronous heat sink + ultrasonic hybrid laser welding, Journal of Materials Processing Technology, Vol.317 (2023), DOI:10.1016/j.jmatprotec.2023.118215.
(74) Xu, L., Tang, X., Han, S., Huang, S., Shao, C., and Cui, H., Study on full-penetration laser welding of aluminum alloy under electromagnetic field support and subatmospheric pressure, Journal of Materials Processing Technology, Vol.320 (2023), DOI:10.1016/j.jmatprotec.2023.118105.
(75) Farhang, B., Tanrikulu, A. A., Ganesh-Ram, G., Jain, A., Amerinatanzi, A., Electromagnetic field-assisted laser welding of NiTi to stainless steel: Towards a lightweight, high-strength joint with preserved properties, Journal of Materials Processing Technology, Vol.314 (2023), DOI:10.1016/j.jmatprotec.2023.117888.
(76) Betiku, O. T., Ramachandran, D. C., Ghatei-Kalashami, A., DiGiovanni, C., Sherepenko, O., Ghassemi-Armaki, H., and Biro, E., Improving the mechanical performance of press-hardened steel resistance spot welds via in-situ grain refinement, Journal of Materials Processing Technology, Vol.320 (2023), DOI:10.1016/j.jmatprotec.2023.118122.
(77) Maeda, K., Sato, Y., Suzuki, R., Suga, T., and Tsukamoto, M., Influences of cold-sprayed steel interlayer on mechanical properties of laser welded steel/Al lap joints, Journal of Materials Processing Technology, Vol.320 (2023), DOI:10.1016/j.jmatprotec.2023.118103.
(78) Chianese, G., Hayat, Q., Jabar, S., Franciosa, P., Ceglarek, D., and Patalano, S., A multi-physics CFD study to investigate the impact of laser beam shaping on metal mixing and molten pool dynamics during laser welding of copper to steel for battery terminal-to-casing connections, Journal of Materials Processing Technology, Vol.322 (2023), DOI:10.1016/j.jmatprotec.2023.118202.
(79) Kamat, S., Cai, W., Rinker, T. J., Bracey, J., Xi, L., and Tan, W., A novel integrated process-performance model for laser welding of multi-layer battery foils and tabs, Journal of Materials Processing Technology, Vol.320 (2023), DOI:10.1016/j.jmatprotec.2023.118121.
(80) Huang, S., Xu, L., Lou, M., Chen, H., Zhang, K., and Li, Y., Keyhole-induced pore formation mechanism in laser-MIG hybrid welding of aluminum alloy based on experiment and multiphase numerical model, Journal of Materials Processing Technology, Vol.314 (2023), DOI:10.1016/j.jmatprotec.2023.117903.
(81) Tang, Z., Zhang, X., Wan, L., Ouyang, Y., Gao, Z., Wei, Q., Wang, A., Yang, H., Wu, Y., Zhang, Y., Wang, H., and Wang, H., Blue laser welding of laminated electrical steels: Dynamic process, weld bead characteristics, mechanical and magnetic properties, Journal of Materials Processing Technology, Vol.314 (2023), DOI:10.1016/j.jmatprotec.2023.117859.
(82) Dhara, S., Finuf, M., Zediker, M., Masters, I., Barai, A., and Das, A., Utilising blue laser over infrared laser to enhance control of penetration depth and weld strength for producing electric vehicle battery interconnects, Journal of Materials Processing Technology, Vol.317 (2023), DOI:10.1016/j.jmatprotec.2023.117989.
(83) Liu, Y., Tan, C., Zhang, Z., Su, J., Song, X., Chen, B., Xia, H., and Wu, T., Surface pre-oxidation for enhancing laser assisted joining between carbon fiber reinforced thermoplastic composites and AZ31B Mg alloy, Journal of Materials Processing Technology, Vol.312 (2023), DOI:10.1016/j.jmatprotec.2023.117871.
(84) 仙波卓弥, 天本祥文, 三浦太久真, ピコ秒パルスレーザを使った超硬合金に対する精密微細加工, ゼロカットを併用した3次元微細加工法, 日本機械学会論文集, Vol.89, No.926 (2023), DOI:10.1299/transjsme.23-00138.
(85) Li, M., Wen, Z., Wang, P., Liu, Y., Li, Z., and Yue, Z., Femtosecond laser high-quality drilling of film cooling holes in nickel-based single superalloy for turbine blades with a two-step helical drilling method, Journal of Materials Processing Technology, Vol.312 (2023), DOI:10.1016/j.jmatprotec.2022.117827.
(86) 山田洋平, 高塚 史, 池野順一, 酒井一樹, 高田宏樹, ガラスのレーザスライシング技術による光学レンズの成形, レーザ内部加工における応力形成とき裂伝播メカニズム, 日本機械学会論文集, Vol.89, No.921 (2023), DOI:10.1299/transjsme.23-00015.
(87) Huang, Y., Zhou, Y., Li, J., and Zhu, F., Femtosecond laser surface modification coupling with surface metallurgical reaction promotes surface plasticity of SiC, Journal of Materials Processing Technology, Vol.319 (2023), DOI:10.1016/j.jmatprotec.2023.118077.
(88) Sun, F., Penchev, P., Pruncu, C. I., Wang, J., Pargeter, C., Wang, Y., Li, C., Dimov, S., Jiang, J., and Blackman, B. R. K., On enhancement of fracture resistance of adhesive joints by surface micropatterning using a femtosecond laser, Journal of Materials Processing Technology, Vol.315 (2023), DOI:10.1016/j.jmatprotec.2023.117904.
(89) Liu, X., Tanaka, Y., Fujiwara, S., Maegawa, S., Ono, S., Surface modification technique of titanium alloy to improve the tribological properties using sub-ns laser irradiation in PAO oil, Journal of Advanced Mechanical Design, Systems, and Manufacturing, Vol.17, No.1 (2023), DOI:10.1299/jamdsm.2023jamdsm0014.
(90) Liu, M., Chen, Y., Zhang, Y., Zhao, J., Wang, D., Li, C., Pei, J., Ouyang, D., and Ruan, S., Weldability improvement of immiscible polycarbonate/GFRP by femtosecond laser surface treatment, Journal of Materials Processing Technology, Vol.318 (2023), DOI:10.1016/j.jmatprotec.2023.118033.
(91) Zheng, B., Trofimov, V., Yang, Y., Liu, L., Feng, Y., Zheng, Z., Huang, J., and Wang, D., Study on additive and subtractive manufacturing of high-quality surface parts enabled by picosecond laser, Journal of Materials Processing Technology, Vol.318 (2023), DOI:10.1016/j.jmatprotec.2023.118013.
(92) Chen, P., Chi, Z., Pan, R., Qin, F., Qiu, P., Huang, J., and Xu, S., Materials removal mechanism of single crystalline SiC with laser-induced periodic surface structures (LIPSS), Journal of Materials Processing Technology, Vol.321 (2023), DOI:10.1016/j.jmatprotec.2023.118108.
(93) Kuji, C., Mizutani, M., Takenaka, K., Shimada, K., Konno, T. J., Soyama, H., and Kuriyagawa, T., Effect of local heating by ultrashort pulsed laser on Fe–Si–B–Cr amorphous alloys and its influence on blanking machinability, Precision Engineering, Vol.81 (2023), pp.135-144.
(94) Harai, T., Mizutani, M., Shishido, S., Nakamura, K., Ohmori, HJ., Konno, T. J., Kuriyagawa, T., Low-temperature degradation of yttria-stabilized zirconia treated with pulsed laser and annealing techniques, Precision Engineering, Vol.80 (2023), pp.45-56.
(95) Zhemchuzhnikova, D., and Zollinger, J., Microstructure formation in 6061 aluminum alloy during nano-second pulsed laser processing, Journal of Materials Processing Technology, Vol.314 (2023), DOI:10.1016/j.jmatprotec.2023.117898.
(96) Wang, Y., Zhang, M., Dong, Y., Zhao, J., Zhu, X., Li, Y., Fan, L., and Leng, H., Morphology modelling and validation in nanosecond pulsed laser ablation of metallic materials, Precision Engineering, Vol.79 (2023), pp.34-42.
(97) Liverani, E., Ascari, A., Tomesani, L., and Fortunato, A., From conduction to keyhole transition on copper using blue laser: Bead-on-plate process modeling and analysis of physical phenomena, Journal of Materials Processing Technology, Vol.316 (2023), DOI:10.1016/j.jmatprotec.2023.117953.
(98) Xie, J., Raoelison, R. N., Zhang, Y., Liu, Y., Shou, W., Mazeran, P. E., Kang, N., and Rachik, M., Mesoscopic segregation in H13 steel molten pool during laser remelting: A combined influence of Marangoni convection and oxidation, Journal of Materials Processing Technology, Vol.316 (2023), DOI:10.1016/j.jmatprotec.2023.117956.
(99) Sakai, T., Okamoto, Y., Taura, N., Saito, R., and Okada, A., Effect of scanning speed on molten metal behaviour under angled irradiation with a continuous-wave laser, Journal of Materials Processing Technology, Vol.313 (2023), DOI:10.1016/j.jmatprotec.2023.117866.
(100) Xu, B., Zhang, J., Liu, X., Liu, H., and Zhao, W., Fully coupled thermomechanical simulation of laser-assisted machining Ti6Al4V reveals the mechanism of morphological evolution during serrated chip formation, Journal of Materials Processing Technology, Vol.315 (2023), DOI:10.1016/j.jmatprotec.2023.117925.
(101) You, K., Liu, G., Wang, W., and Fang, F., Laser assisted diamond turning of silicon freeform surface, Journal of Materials Processing Technology, Vol.322 (2023), DOI:10.1016/j.jmatprotec.2023.118172.
(102) Tanaka, H., Yamada, K., and Ikari, T., Feasibility Study of Laser-Assisted Incremental Forming for Carbon Fiber Reinforced Thermo Plastic Based on 3D-CAD Data, International Journal of Automation Technology, Vol.17, No.2 (2023), pp.144-155.
(103) Yamada, K., Kushida, N., Wada, S., Sentoku, E., and Tanaka, R., A machine learning approach for simulation of multi-stage laser forming process, Journal of Advanced Mechanical Design, Systems, and Manufacturing, Vol.17, No.1 (2023), DOI:10.1299/jamdsm.2023jamdsm0006.
(104) Zhang, X., Liu, J., Xia, M., and Hu, Y., Laser shock peening enables 3D gradient metal structures: A case study on manufacturing self-armored hydrophobic surfaces, International Journal of Machine Tools and Manufacture, Vol.185 (2023), DOI:10.1016/j.ijmachtools.2023.103993.
(105) Pan, X., Zhou, L., Wang, C., Yu, K., Zhu, Y., Yi, M., Wang, L., Wen, S., He, W., and Liang, X., Microstructure and residual stress modulation of 7075 aluminum alloy for improving fatigue performance by laser shock peening, International Journal of Machine Tools and Manufacture, Vol.184 (2023), DOI:10.1016/j.ijmachtools.2022.103979.
(106) Leo, J. R. O., Zabeen, S., Fitzpatrick, M. E., Zou, J., and Attallah, M. M., A study on the effects of laser shock peening on the microstructure and substructure of Ti–6Al–4V manufactured by Selective Laser Melting, Journal of Materials Processing Technology, Vol.316 (2023), DOI:10.1016/j.jmatprotec.2023.117959.
(107) Jin, K., Yang, Z., Chen, P., Feng, P., and Qiao, X., Modeling of solidification process during multi-track laser cladding with 3D cellular automata coupling gas-liquid interface tracking and solute suppression nucleation, Journal of Materials Processing Technology, Vol.315 (2023), DOI:10.1016/j.jmatprotec.2023.117927.