微分方程式に近似解を代入すると残差が残る.この残差に重みをかけて領域全体で積分したものが0となるように,近似解の未知定数を定める方法をいう.すなわち\[\int {{w_j}\left[ {L(\bar u) - f} \right]} d\it\Omega = 0\]と定式化できる.ここで\(\bar u\)は微分方程式L(u)=fの近似解であり,wjは重み関数である.重み関数の選び方によっていろいろな手法が生まれる.部分領域法:領域を多くの小領域に分割する.重み関数をこの部分領域の中で1,外で0に選んだものが部分領域法である.選点法:重み関数としてデルタ関数を選ぶ.この場合選点において残差は0となり厳密解に一致する.特に選点として直交関数を形成する固有点に選ぶと効果的である.最小二乗法:重み関数として,\({w_j} = \partial r/\partial {a_j}\)を選ぶと最小二乗法となる.rは残差,ajは未知定数である.有限要素法:重み関数として形状関数Njを選ぶと,ガラーキン有限要素となる.境界要素法:Lの随伴微分演算子Mの基本解を重み関数に選び,部分積分を2回行って逆形式を作ると境界要素法となる.モーメント法:重み関数として,1, x, x2, …を選ぶとモーメント法になる.