最小二乗法

least square method

 Δt間隔でサンプリングされたN個のデータ系列\({x_j};j = 0,1, \cdots ,N - 1\)がm次の推定多項式\({{\mathord{\buildrel{\lower3pt\hbox{$\scriptscriptstyle\frown$}} \over x} }_j} = \sum\limits_{k = 0}^m {{a_k}{{(j\it\Delta t)}^k}} \)と推定誤差εjの和として\({x_j} = {{\mathord{\buildrel{\lower3pt\hbox{$\scriptscriptstyle\frown$}} \over x} }_j} + {\varepsilon _j},j = 0,1, \cdots N - 1\)で表現できるものと考え,誤差εjの二乗和を最小にするようにakを決める方法を最小二乗法という.すなわち\(I = \sum\limits_{j = 0}^{N - 1} {\varepsilon _j^2} \)とおきIを最小とする係数alを\(\partial I/\partial {a_l} = 0;l = 0,1, \cdots ,m\)より計算すると\({a_l};l = 0,1, \cdots ,m\)を未知数とする\((m + 1)\)元の連立方程式を得る.これを解くことによりatが得られる.データ系列の推定値\({\mathord{\buildrel{\lower3pt\hbox{$\scriptscriptstyle\frown$}} \over x} _j}\)を表現するのに多項式以外にほかの既知関数を用いてもよい.