====== 最小二乗法 ======
==== least square method ====
{{tag>..c01}}
//Δ////t//間隔でサンプリングされた**//N//**個のデータ系列\({x_j};j = 0,1, \cdots ,N - 1\)が//m//次の推定多項式\({{\mathord{\buildrel{\lower3pt\hbox{$\scriptscriptstyle\frown$}} \over x} }_j} = \sum\limits_{k = 0}^m {{a_k}{{(j\it\Delta t)}^k}} \)と推定誤差//εj//の和として\({x_j} = {{\mathord{\buildrel{\lower3pt\hbox{$\scriptscriptstyle\frown$}} \over x} }_j} + {\varepsilon _j},j = 0,1, \cdots N - 1\)で表現できるものと考え,誤差//εj//の二乗和を最小にするように//ak//を決める方法を最小二乗法という.すなわち\(I = \sum\limits_{j = 0}^{N - 1} {\varepsilon _j^2} \)とおき//I//を最小とする係数//al//を\(\partial I/\partial {a_l} = 0;l = 0,1, \cdots ,m\)より計算すると\({a_l};l = 0,1, \cdots ,m\)を未知数とする\((m + 1)\)元の連立方程式を得る.これを解くことにより//at//が得られる.データ系列の推定値\({\mathord{\buildrel{\lower3pt\hbox{$\scriptscriptstyle\frown$}} \over x} _j}\)を表現するのに多項式以外にほかの既知関数を用いてもよい.
~~NOCACHE~~