International Symposium COMODIA 94 (199.4)

Development of a Hyper-Intelligent System
with New Combustion Analysis Concepts

T.Chikahisa, J.Nakaya and T.Murayama

Department of Mechanical Engineering
Hokkaido University
N13, W8, Kita-ku, Sapporo 060
Japan

ABSTRACT

This paper presents new concepts for combustion analy-
sis of engines together with Hyper-Intelligent System devel-
oped for the analysis. The analysis involves the following
three elements: (1) Constructing a database of relationships
among experimental conditions and combustion characteristics
to predict combustion performance for a given condition; 2)
Extracting the physical relationships among the combustion
factors; (3) Using the ability of the Hyper-Intelligent System to
cover deficiencies in measurements and numerical simulations
by adjusting empirical parameters in the simulation to fit calcu-
lated results to measurements. These above three elements are
independent, but common in establishing relationships among
anumber of non-linear parameters; e.i. learning the spatial dis-
tribution of experimental data in a multi-dimensional space.
The experiments found that a conventional neural network is
insufficient for these applications, and the present study devel-
oped an inference method which enables the analysis of nonlin-
car-multi-variable relationships. A feasibility study with this
new Hyper-Intelligent System showed good learning and infer-
ence performance within the proposed framework.

INTRODUCTION

Extensive research has beecn made into combustion
analysis, but the complexity of phenomena limits the analysis
to specific aspects, and there has been no attempt to analyze
total phenomena from accumulated data. Engine manufactures
generate vast anount of data from experiments, but the data are
used only for specific comparisons and objectives before they
are discarded. By accumulating the vast amounts of data, an
intelligent system which is able to learn the data should be able
to predict results for given conditions based on the accumu-
lated data, recent information technology may be able to real-
ize such an analysis. The objective of this research is to use
accumulated data to propose new basic concepts of combustion
analysis for engines, and to develop an intclligent system to
enable learning and prediction of multi-dimensional relation-
ships.

The analysis involves the three elements listed above.
First an attempt was made to apply conventional Fuzzy Neural

Network Al to the concepts [1]. The result was quite poor,
probably because this kind of Al is basically linear and requires
much data to express non-linear functions by fitting a series of
linear sections. The limiting clement is the inadequate amounts
of data available for this kind of application. Thus a new Sys-
tem, termed a Hyper-Intelligent System, was developed to
overcome the drawbacks. The system draws on non-linear
grids in a multi-dimensional space for the learning process. As
the amount of data increascs, the grid becomes more complex
and accurate. The new system was applied to learning actual
engine data and to predicting engine performance at non-
learned conditions. The agreement between prediction and ex-
periment was quite good with the limited number of learned
data.

The analysis detailed here may be applied, for example,
to the development of engines, evaluation of sub-sysiems, vali-
dation of hypotheses, and improvement of numerical simula-
tions. It has not been possible to locate other research similar to
that in this paper.

CONCEPTS OF THE NEW COMBUSTION ANALYSIS
METHODS

The analysis involves three elements as illustrated in
Fig. 1, and the major concepts involved are explained in the
following.

Establishing Database of Experimental Results and Pre-
dicting Performance,

In engine design and development, experiments are
conducted to elucidate specific points of interest, and similar
experiments are repeated under slightly different conditions
when new engines are developed. Thus experimental data ac-
cumulates but is not efficiently used to predict new conditions.
The main reason for this is that combustion phenomena are
very complex and it has been impossible to establish physical
relationships among the large number of parameters.

The method of analysis presented here proposes to con-
struct a database of relationships among experimental condi-
tions and combustion characteristics to predict combustion per-
formance for a given condition through learning and inference.
The circle in the upper center of Fig. 1 corresponds to the learn-
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Fig.1 Schematic presentation of the three elements of the conceptual framework.

ing part of the intelligent system, where the relationships be-
tween experimental conditions and results, input and output,
are learned and a database of learned results is created. Then
based on this established database, performance is inferred for
new conditions as indicated in the lower left part of the figure.

Extracting Physical Relationships Among Combustion Pa-
rameters

The main objective of combustion research is to identify
physical rclationships among the parameters related to com-
bustion, and to quantify these. This is to enable an analysis of
the relationships using the ability of the Hyper-Intelligent Sys-
tem. As the Hyper-Intelligent System learns the input and out-
put relationships, it becomes possible to extract physical rela-
tionships from the learned database. This is shown at the lower
right in Fig. 1. This may be used, for example, in distinguish-
ing major parameters from insignificant parameters in the phe-
nomena and in evaluating hypotheses.

Making up for Deficiencies in Measurements and Numeri-
cal Simulations :

Photographic observations provides information of the
range of view, but it is difficult to obtain quantitative informa-
tion from pictures. Numerical simulation yields quantitative
information easily with poor reliability however. This is be-
cause the simulations involve many empirical and model con-
stants and because of the complexity of combustion phenom-
ena. Here the aim was to make up for deficiencies in measure-
ments and numerical simulations by adjusting empirical pa-
rameters in the simulation to fit the calculated resulis to mea-
surcments. The upper left part of Fig. 1 illustrates this aspect.

This may be achieved by knowing the relationship be-
tween the empirical parameters in the simulation and the char-
acteristics in the calculated results. As the Hyper-Intelligent
System cstablishes a database of relationships, it can infer the
optimum setting of the empirical parameters which agree best.
As the database increases the inferences become more reliable.

In this manner, the simulated results become increas-
ingly reliable and quantitative information corresponding to
the observed phenomena may be obtained. By analyzing fluc-
tuations in the empirical parameters, it becomes possible to
evaluate the simulation program and identify limits to the
simulation. In this manner the simulation can be simplified by
compounding the complexity into a few empirical parameters
and determine these. This would be possible both for photo-
graphic observation and other kinds of measurements.

APPLICATION OF CONVENTIONAL AI AND ITS
LIMITATIONS

The critical function for this system is the ability to
learn relationships among non-linear and multiple variables
from a limited set of data. In most experiments there are about
five values of data for one variable and the data-sets are gener-
ally one part of the matrix in a full combination of all param-
eters.

Conventional artificial intelligence (AI) systems com-
prise Neural Networks, Fussy, and Expert systems, and Fussy-
Neural-Networks [2]. Here Fussy Neural Networks were in-
vestigated because this kind of system requires a smaller num-
ber of data for learning than Neural-Networks. The Fuzzy-
Neural-Network consists of one network layer and the weight
function is determined by fussy logic. Inferences with this sys-
tem are made from the relative likelihood of a condition to be-
long to a category region, established in multi-dimensional
space.

To evaluate the ability of this kind of Al, input and out-
put data-sets for a given function are studied by the Al, and
inferences for given conditions are compared with the correct
answers to the functions. In the experiments here the number
of input parameters was varied from one to three, and the effect
of repetitions was examined.

Figure 2 shows the result for a simple linear function,
and Fig. 3 for a non-lincar function. The abscissa prescnts the
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Fig.2 Results of learning and inference with function data
using a Fuzzy-Neural-Network (Lincar function)
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Fig.3 Results of learning and inference with function data
using a Fuzzy-Neural-Network (Non-linear function)

true (right) answer and the ordinate is the inference of the Al
system. The parameters in the figures are the number of data-
sets and the number of times learning was repeated. The
learned data-sets in the figure distribute so that inference can be
made to interpolate the region involved. It is seen from the
figures that the learning ability of conventional Al is poor, par-
ticularly when the number of data-sets is limited. When the
function is non-linear, the result is quite poor and outside ac-
ceptable limits.

An application of the ideas presented here to predict en-
gine performance for the conditions in Table 1 were made.
Sonte of the data measured in few different engines were evalu-
ated by Fuzzy-Neural-Network Al, and predictions were made
for the rest of the measured data. An example of the results is

Table 1 Input and output parameters

INPUT PARAMETERES

Combustion Chamber Configuration
Swirl Ratio

Number of Nozzle Holes

Injection Timing

Engine Speed

Mean Effective Pressure

OUTPUT PARAMETERS

Specific Fuel Consumption
NOx

Smoke

Maximum Rate of Heat Release
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Fig. 4 Learning and inference of smoke emissions using
a Fuzzy-Neural-Network

shown in Fig. 4, where “full data learning” is where the Al
learns all the measured data and makes predictions for a part of
the learned conditions. The inferences of this conventional Al
are extremely poor.

This makes it apparent that conventional artificial intel-
ligence is not adequate for the proposed application. The rea-
son may be that conventional Al is essentially linear. For ex-
ample, the logic of neural networks is a simple addition of
weighting functions in the network synapse. To realize the
proposed concepts it is necessary to develop a different intelli-
gent system which achieve prediction of non-lincar relation-
ships from a limited volume of data. There is multivariate
analysis theory [3], but this is also limited to linear relation-
ships.

CONCEPT AND ALGORITHM OF THE HYPER-IN.
TELLIGENT SYSTEM

Major Elements of the Hyper-Intelligent System

The experimental conditions and resulis create a multi-
dimensional space of coordinates of condition parameters and
results. With physical problems a result, solution, is generally
unique for one condition, and a set of the experimental results
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forms a curved surface in multi-dimensional space, which can
be treated as a geometrical figure.

Figure 5 is an example of a three dimensional surface,
X1 and X2 are the conditions and Y is the result parameter.
Here it is possible to impose a grid on the surface, and a major
concern of the Hyper-Intelligent System is to create grid lines
and store grid information. In the intelligent system this is ex-
tended to multi-dimensional coordinates. With three points in
space, one may form a three dimensional plane. As implied by
this, the Hyper-Intelligent System infers space from a limited
amount of data, and as the number of the data-sets increases the
accuracy of the inference improves.

Algorithm of the Learning in the Hyper-Intelligent System

[t is not feasible to draw multi-dimensional space but it
may be imaged as in Fig. 6, where radiating coordinates are
conditions and a result exists for each set of coordinate values.
The grid line in the Xi direction is where all coordinate values
other than Xi have the same value and the Xi value varies as
shown by the dotted lines in Fig. 6. This yields a curve in the
Yj-Xi plane as shown in the figure, stored as grid information.
Thus the projection of experimental results on to the Xi plane is
equivalent to project points which, except for the Xi coordi-
nate, have the same coordinate values.

In the first approximation of the projection, space is di-
vided into small sections termed patches as shown in Fig. 5,
and the points in a patch are projected linearly on to the Xi
planc. Figure 7 illustrates the process of projection: First all
the points in the patch are projected to have one variable of the
same value, Xk, different from Xi. The projection of point A
on to the Xk plane is determined as the point C, where the line
between A and B crosses the plane, and B is the point on the
other side of the plane closest to A. The vector of C is then

(I-c) *A{Y), X1,..Xk, ..} + a *B{Yj, X1,.Xk, ..} =
C{(I-a)YjA+aYjB, (I-a)XI4+aXIB, ...,
(1-a) XkA+ aXkB,...}

where the « is determined to give
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Fig.6 Multi-dimensional coordinates and grid generation in
a multi-dimensional space

Fig.7 Schetch showing the establishment of point C on the
Xk plane

Xk= (1-0)XkA+aXkB

In this way all points in a patch can be projected on to
the Xk plane, and one dimension , e.i. Xk, can be ignored in the
further process. Repeating this for the other coordinates (other
than Xi) finally yields the projection on the Xi plane as in Fig.
6. Then the grid function can be obtained by simply fitting a
curve to the projections. This function is stored as the result. In
the present study a second order polynomial function was used
for the fitting.

In this manner grid lines are created for any point and
direction, and the knowledge of the system improves. As the
number of points in a patch increases, the patch size can be
reduced, or non-linear projection may be possible using the al-
ready established functions. For a region where points distrib-
ute in a plane, patches may be consolidated into larger ones to
make the space simpler. With optimization of patches the time
for analysis and the size of the memory required becomes the
mininmum, and details of the space become clearer.

Algorithm of Inference in the Hyper-Intelligent System
Inference can be made from the established grid lines.
First a patch with the condition of inference is identified. This




was performed with a fuzzy algorithm in the present system.
Then by substituting the condition values into a few grid func-
tions close to the inferred condition, points are created in the
vicinity of the condition involved. As most of the grid lines do
not involve the condition, the calculated points locate over a
range in the space. Similarly in the learning process, a projec-
tion of the points is made to the point of the condition. The
inference is finally achieved by averaging the projected values.

APPLYING THE HYPER-INTELLIGENT SYSTEM TO
COMBUSTION ANALYSIS

Learning and Inference of Functions
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Fig. 8 Results of tests using the Hyper-Intelligent System
(Linear function)
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Fig. 9 Results of tests using the Hyper-Intelligent System
(Non-linear function)

To evaluate the usefulness of the Hyper-Intclligent Sys-
tem, an examination was made for a varicty of functions. The
results are shown in Fig. 8 to Fig. 11, where the number of
patches dividing the space was varied. The inference is signifi-
cantly better than with conventional Al as shown in Figs. 2 to 4.
In Figs. 9 and 10, for example, the fit is good even for nonlinear
functions. The accuracy of the inference increases as the patch
number increases, particularly with non-linear functions. The
number of data necessary is much smaller than with conven-
tional Al, indicating that the Hyper-Intelligent System is suit-
able for the proposed application, where usually only a limited
number of data is available. Even with three variables as in
Fig. 11, the fit is still good, although it requires more leaning
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Fig. 10 Results of tests using the Hyper-Intelligent System
(Non-linear function)
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Fig. 11 Results of tests using the Hyper-Intelligent System
(Non-linear function with three variables)
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Fig. 12 Results of engine data tests using the Hyper-Intelli-
gent System (Smoke emission)

data and patches than with two variables.

As the characteristics of physical problems are usually
simple, the Hyper-Intelligent System appears to be a good
learning and inferring tool necessary for the proposed applica-
tion.

Engine Performance Prediction

The same set of engine data used in the previous section
for the Fuzzy-Neural-Network was used with the Hyper-Intel-
ligent System, and the performance was compared with the
measured values. The results for smoke and specific fuel con-
sumption are shown in Figs. 12 and 13. The abscissa is the
measured true value and the ordinate is the inferred value pre-
dicted by the Hyper-Intelligent System. Compared with Fig. 4
for the Fuzzy-Neural-Network, the prediction ability is signifi-
cantly better. There is some scattering in the figures, due to
errors in the inference and scatter in the experimental data.

The treatment of errors in the learned data is one of the
problems to be addressed in the next stage of the development
of the intelligent systeni. Investigation must also be made of
the sensitivity of the intelligent system to the number of vari-
ables, the size of the data-sets for learning, and the limits to the
complexity of the phenomena.

CONCLUSIONS

1. The study proposed the following combustion analy-
sis framework to enable learning and inference:
* Establishing a data-base of experimental results for perfor-
mance prediction.
* Extracting physical relationships among combustion factors.
* Adjusting for deficiencies in measurements and numerical
simulations.

2. Conventional artificial intelligence, Fuzzy-Neural-
Network Al, was used with the framework to learn and predict
engine performance. The result was quite poor and it was
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Fig. 13 Results of engine data tests using the Hyper-Intel-
ligent System (Fuel consumption)

found to require a large number of data sets for learning. This
is partially due to the essentially linear summation of the
weight functions in the network.

3. A prototype of a new intelligent system, termed
Hyper-Intelligent System, was developed for the concepts.
This system enables an analysis of non-linear, multi-variable
relationships with a limited number of data sets.

4. The performance of the Hyper-Intelligent System
was examined by predicting a variety of function and engine
data. The results with the intelligent system were good with a
limited number of learning data. The intelligent system has
good potential as a powerful tool to realize the proposed ideas.
Further investigation is necessary to handle errors in the learn-
ing data, establishing limitations of the intelligent system, the
validity of the concepts proposed, and speed of the algorithm.
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