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Journal bearing rotor involving stability problem, called oil-wheel/oil-whip (Fig.1)

There is no method to simply determine the Stability limit number of revolutions for instable
vibrations, such as oil whirl & whip to occur during high speed rotations

By citing the reference literature (1) as to oil whirl / whip, examinations were made for three
cases of the bearing gap C/R = 0.001, 0.003 and 0.010, with the results of experiment and of
calculation given in Fig.2 and Fig.3, respectively. Fig.3 shows the results of complex
eigenvalue analysis using 8 parameters of dynamic bearing characteristics, indicating that
both the experiment and calculation have the Stability Limit Speed (SLS) of about 90rps. A
simplified method is considered for determining this SLS. The equation of motion is given
from the reference literature (2) as follows:
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The first term is the mass matrix of a mode synthesis method model, ks and ¢, are oil film
forward components, k; and ¢, are oil film backward components, while z, is journal
displacement, # is relative bending deflection of the shaft center of the first mode possibly
occurred, and w: is the number of natural frequency of shaft bending (simply supported),
respectively. As oil film damping is very large ({; > 1), the approximate characteristic roots
would be s = jA2 and s = jw: Thus, the following equation gives the stability of s = jA2 +
A, where A4 is the difference between precise roots and approximate roots.
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As the determinant is the eigenvalues of an undamped system, if @, and wy are given as in
Fig.4, the primary natural frequency @ becomes a little below than the smaller one. Thus,
this simplified determination “Exceeding A2 >, then instable” is obtained.

Fig.5 illustrates the results of applying this simplified determination to the reference literature
[1]. Now, look at the process of SLS calculation for C/R = 0.010. From the number of natural
frequency of shaft bending w. = 47.3Hz, oil film spring constant ks = 8MN/m and rotor mass
m; = 51.8kg, the whirl natural frequency ws = 62.6Hz. These two frequencies provide the
undamped natural frequency w; = 42.2Hz. The intersection point of w@and AQ=0.493Q in
Fig.5 corresponds to the SLS, that is, 42.2/0.493 = 85.6rps, which agrees well the
experimental data of 88.4rps. For comparison, in case of C/R =0.003, w; = 44.1Hz, and A =
0.503, thus the SLS is 86rps (experimental data 86.8rps). And in case of C/R = 0.001, w; =
45.8Hz, and 4 = 0.5, thus the SLS is 93rps (experimental data 93.7rps).

As one more example, the results of applying this simplified determination to the reference
literature [3] are shown in Fig.6. The left figure corresponds to a case where the disk is on
the left end, and the number of revolutions for whirl generation is high, that is , an unstable
condition soon liable to shift to whip. The right figure corresponds to a case where the disk
is on the right end, where the system is unstable in the low speed side, liable to generate whirl.
Further rise in rotation results in shift to whip, while the frequency is saturated at the shaft
bending natural frequency w:. In the left figure, the lowest degree natural frequency

w1 = 2,880cpm, and 4 = 0.44, thus the SLS is 6,545rpm (experimental data about 7,000rpm).
In the right figure, the lowest degree natural frequency wi=1,661cpm, and

A = 0.44, thus the SLS is 3,775rpm (experimental data about 3,600rpm). As mentioned
above, application of this simplified determination to the reference literatures [1]and [2], is
valid for estimation.

In place of complicated complex calculations, this simplified determination is found valid.
The shaft bending natural frequency - can be measured, but the oil spring natural frequency
@y is difficult to determine, which remains problematic.
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Fig.1 Schematic diagram of rotor V¥

_— |le - 1X
] e T
= I T T m—.
gw 40 | haiy I——
;g =2 e — -
2 / 1) C/R=0.001 @ Rr-0.010
Z 0 —
1.Op T | T
=ol P
7 ‘ )
L
,g 0 — | -‘\
;0 Q. =868 (1) Q=884 (s-:J“
é" 0 20 20 40 60 80 1000 20 40 60 B0 100
g Q (s) Q (1) Q (s1)
@ ¢/R=0.001 @ C/R=0.003 @ Cc/R=0.01
Fig.3 Results of complex eigenvalue calculation )
(dynamic bearing characteristics: 8 parameters)
m:=518kg ke
19%
i
@, =473 Hz )
C4 (.s‘ - JAQ)
CiR @000l | (@0.003 ®0.01
kq 48x10° | 17x105 | 8x10¢
o’ 294%105 | 0.13X106 | 002X 10¢
i 0.5 0.503 0493
& 29 22 049
80
@y (3)
60
N @,
T i
- " —
3 .
E
g 93 (93.7)
“«=
2 86 (86.8)
§ 85.6 (88.4)

80

Number of revolutions [rps]

Yoo

Fig.5 Results of simplified determination
applied to the reference literatures (1)
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Fig.6 Results of simplified stability determination V¥
applied to the reference literatures (3)
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