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Vibration Case 
Circle to Ellipsoid in Polar Plot of Asymmetric Stiffness Rotor Rotating 

machinery 
Self-excited 

 

 

A high speed rotor having a plurality of flexible couplings 

 

A modal circle in Nyquist diagram measured when passing the critical speed during acceleration 
was characterized by an extreme ellipsoid (Fig.1). In some cases, this resulted in divergence 
without being able to pass the critical speed. 

 

 

The ovalization phenomenon was characterized in that the ellipsoid tended to be small for a small 
unbalance, while the ellipticity and the direction of major axis and minor axis remained 
unchanged. As this was a phenomenon related to stability, instability of the asymmetric rotor was 
estimated to be the cause. The only cause for asymmetricity that came to mind was the 
asymmetricity of the bending stiffness of flexible couplings. 
 

 

The equation of motion of an asymmetric rotating shaft is similar to the Mathieu equation having 
stiffness variations of twice the rotational speed Ω, where circular whirl with the rotational speed 
Ω is assumed and the complex variable iYXZ +=  is introduced. Considering an equivalent 
damping (damping ratio ζ ), the following equation is obtained: 
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iYXZ −= , nω is average natural frequency, thus mode asymmetricity µ can be obtained from 
the natural frequencies in the x (flexible) and y (stiff) directions.  
  By putting ( ) ( ) tieiyxZ λ+Ω+= , the stability condition can be derived from the following the 
Hurwitz stability criterion of the characteristic equation concerning λ : 
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The left hand-side of the above equation = 0 (stability & instability limit) is a quadratic equation 
on ( )2nωΩ , which can thus be solved as follows: 
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The stability condition independent of Ω is 04 22 <− ζµ , so that the stability condition is given 
by effective asymmetric ratio ( )ςµκ 2= 1< . 
The reason for ovalization is that the restoring force does not tend toward the original point, and 
that the effective damping force fluctuates (refer to Fig.2). In this case, κ and µ were as shown 
in Figs.3 and 4. It is known that the ellipticity A and κ  are related as follows(2): 
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The countermeasures consist of reducing the modal asymmetric ratio µ  and of increasing the 
damping ratio ζ . In this case, the anisotropy of bending stiffness of the flexible rotor was 
measured and controlled under a small value. 

 

 

In this phenomenon, the modal asymmetric ratio was µ  = 0.01. Low damping ratio causes 
various problematic phenomena. 
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Fig.1 Example of ovalization of modal circle 
(numerical figures: rotational speed in Hz) 

Fig.2 Figure explaining why a modal circle changes 
to an ellipsoid 

 
(A flat shaft generates a mismatch between the directions of 
shaft deflection and of restoring force, thus causing a force F 
in the whirling direction. When taking the stiff axis and 
flexible axis directions in y and x, F acts for additive damping 
in the 1st and 3rd quadrants, while for cancelling the 
damping in the 2nd and 4th quadrants.) 

Fig.3 Relationship among modal asymmetric ratio μ, 
    effective asymmetric ratio κ and ellipticity A, 

for damping ratio ζ as a parameter 
Fig.4 Stability diagram of parametric vibration for 

damping ratio ζ as a parameter 
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Modal asymmetric ratio 
Dimensionless rotational speed nωΩ  
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