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Case History
Stabilization of Liquid Containing Rotor by Active Magnetic Bearing Active control

Self-excited 
Vibration 

Centrifuge for hospital/laboratory-use featuring ultra-high-speed and continuous separation

Figure 1 shows the structure of an ultra-high-speed centrifuge. In the conventional structural
design, damping is ensured by oil film bearings using squeeze film on the journal bearings.
In Fig.2 are shown the rotational speed and frequency with a mark "✩" of unstable vibration
phenomena that occurred on the conventional ultra-high-speed centrifuge. In addition, Fig.3
shows the construction of an electromagnetic damper type ultracentrifuge, and Fig.4
indicates the natural frequency map of this electromagnetic damper type ultra-high-speed
centrifuge. The rotational speed and frequency at which unstable vibrations occurred are
marked with "". 

It was estimated that since liquid was sealed in the rotating drum rotor and it formed layers in
the drum due to the difference in specific gravity, the layer boundary surface had almost the
same effect as the free surface, thus generating an unstable force.

Figure 5 shows a calculation model where an electromagnetic damper type centrifuge is
placed on a station of the shafting, while Figure 6 provides vibration modes of this rotor 
system. Figure 4 indicates changes in the natural frequency against the rotational speed. The
natural frequency of the 2nd order backward mode decreases down to about 10 Hz before
reaching the rated rotational speed 4200rpm, while the forward mode reaches up to 100 Hz,
since these change is due to gyroscopic effect. As is noted in Fig.2, the onset frequency to
generate self-excited vibration differs depending on each rotational speed, showing a rising
to the right tendency from about 43 Hz to 90 Hz. In addition, the self-excited vibration
frequency as indicated in Fig.4 goes up from 60 Hz to 100 Hz with a rising to the right,
which means that it is an unstable forward vibration.

An electromagnetic damper was mounted on the plain bearing, located at the top, for damper, 
and a cross control circuit was employed to the electromagnetic damper against the
self-excited vibration. The purpose of this arrangement was for the oscillator to generate the
same frequencies as the self-excited vibration, which were introduced to the tuning filter, and
then from among the x direction vibrations and y direction vibrations, only unstable vibration
components of the self-excited frequency were extracted. The x components thus extracted
were crossed to y components, while y components to x components for the control, thereby
providing a significant damping effect on the self-excited vibration frequency (Figs.7, 8 and
9). 
As the forward natural frequency of the self-excited vibration varied with the rotational
speed, the tuning frequency was changed for every rotation so as to follow it, and thus the
self-excited vibration was successfully stabilized (Figs.10 and 11).

A rotor containing liquid generates a forward self-excited vibration. An electric damper 
together with a cross control circuit is effective for stabilizing the rotor system subjected to 
whirl motion including self-excited vibration. 

Matsushita, et al. Transactions of the JSME 53-496 (1987): 2453 

Unstable vibration, electromagnetic damper, self-excited vibration, control, liquid containing 
rotor, instability 
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Fig.1: Conventional ultracentrifuge 

Fig.2: Unstable vibration phenomenon
 (conventional type)

Fig.4: Natural frequency map 

Fig.3: Electromagnetic type ultracentrifuge 

Fig.5: Calculation model 
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Fig.6: Natural frequency mode 
(0 rpm) 

Fig.7: Control circuit for electromagnetic 
damper 

Forward motion 

Fig.8: Whirl of rotor vibration 
and geometrical 
differentiation 

 

Fig.9: Bode diagram of PID control circuit with cross 
circuit 

Fig.11: Generation and stabilization of self-excited vibration 
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Fig.10: Vibration response curves 
(two liquid mixtures) 
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