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1. Solid Oxide Cells 
 

Demand for clean, sustainable and efficient energy sources has become increasingly urgent due to 
climate change concerns and the need for energy security and independence. Solid oxide cells (SOCs) are 
electrochemical energy conversion devices which can operate in two different operating modes; solid oxide 
fuel cells (SOFCs) and solid oxide electrolysis cells (SOECs). They are very promising technologies for 
future energy market thanks to the high energy conversion efficiency, low emissions, and fuel flexibility. In 
particular, high operating temperature of SOCs of 600 – 1000 oC gives an opportunity for direct feeding of 
carbon containing fuels such as natural gas and biogas etc. (Minh, 2004; Sharma et al., 2016). SOCs have a 
great potential for wide range of applications due to their scalability. During SOFC operation, supplied fuel 
is converted into electricity. On the other hand, H2 and CO can 
be produced from H2O and CO2 when SOC is operated in the 
electrolysis mode. SOECs can be a great supplement for 
fluctuating renewable sources, where the surplus electricity is 
used for electrolysis operation (Fig. 1). Therefore, when SOCs 
are operated in the reversible mode they can help in balancing 
between power supply and demand.  

SOC consists of three primary components, i.e. fuel and air 
electrodes and an electrolyte. The basic principle of 
electrochemical processes in SOCs are as follows:  

 
SOFC operation: 

Fuel electrode reaction: Hଶ ൅ Oଶି → HଶO ൅ 2𝑒ି  (1) 
Oxygen electrode reaction: 0.5Oଶ ൅ 2𝑒ି → Oଶି  (2) 

SOEC operation: 
Fuel electrode reaction: HଶO ൅ 2𝑒ି → Hଶ ൅ Oଶି  (3) 
Oxygen electrode reaction: Oଶି → 0.5Oଶ ൅ 2𝑒ି  (4) 
 
Microstructure of the porous electrodes contributes to both 

initial performance and long-time stability of SOCs. For 
example, the structure of fuel electrode has to accommodate 
transports of oxygen ions, electrons, fuel and steam gas 
species. Conventionally, nickel (Ni)-based composites, such as 
Ni-yttria stabilized zirconia (Ni-YSZ) and Ni-gadolinium 
doped ceria (Ni-GDC) are used as fuel electrodes. Typical 
particle size in the SOFC electrode is in the micrometer and 
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Fig. 1  Operation schema of SOFC and 
SOEC. 
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sub-micrometer range. The electrochemical reaction occurs at the boundaries between pore, ion and 
electron conducting materials, which is called triple phase boundaries (TPBs). For mixed ionic-electronic 
materials (MIECs), electrochemical reactions can additionally take place on the double phase boundaries 
(open surface of MIEC particles). Electrochemical reaction sites are schematically shown in Fig. 2 together 
with an example of typical SOC fuel electrode microstructure.   

 

 
Fig. 2  A) Triple phase boundary (TPB) and double phase boundary (DPB) electrochemical reactions in the fuel 
electrode and B) typical microstructure of fuel electrode. 

 
 

 
Fig. 3.  Microstructure reconstruction by FIB-SEM: A) orthogonal FIB-SEM, B) dataset of SEM images,  
C) segmented images and D) reconstructed microstructure. 
 

2. FIB-SEM measurements 
 
Three-dimensional (3-D) reconstruction of the microstructure is an important task in the field of 

material engineering. By obtaining 3-D information, not only the microstructure parameters are calculated, 
but also the 3-D numerical simulations for transport phenomena can be conducted. The microstructural 
analyses by focused ion beam-scanning electron microscope (FIB-SEM) can provide detailed and reliable 
structural information for samples with feature size of 0.01 - 30 µm (Fig. 3). During FIB-SEM 
measurement, 500 to 1000 sequentual SEM images are taken, processed and assembled into a 3-D model. 
FIB-SEM has been successfully applied in the field of SOC for evaluating relationships between the 
microstructure, electrochemical performance and microstructural degradation, e.g. initial structure 
influence (Kishimoto et al., 2011; Sciazko et al., 2022) Ni reduction (de Angelis et al., 2020), redox 
stability (Pecho et al., 2015), coarsening (Chen-Wiegart et al., 2016), migration (Nakajo et al., 2020; 
Ouyang et al., 2022), ceramic support deformation (Komatsu et al., 2021; Zekri et al., 2017), sulfur 
poisoning (Harris et al., 2014), and carbon deposition (Sciazko et al., 2023), etc. 
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However, quantitative evaluations of 
microstructures are still very challenging, as it 
requires reliable data segmentation algorithms as well 
as large reconstruction volume and high resolution of 
imagining. There is a trade-off between 
reconstruction volume and resolution as shown in Fig. 
4 (Xu et al., 2017), where the typical scale of relevant 
SOC microstructure features covers several orders of 
magnitude (Wankmüller et al., 2020). In addition, 
FIB-SEM measurement requires collecting a large 
number of consecutive SEM images. Therefore, 
FIB-SEM is not feasible for fast screening due to the 
measurement complexity.  

Machine learning has emerged as a powerful tool 
for understanding and analyzing complex data for 
materials engineering (Schmidt et al., 2019; Wei et al., 
2019). Machine learning techniques is expected in the 
characterization of SOC microstructures, which may 
finally help in developing improved electrodes. The 
approach by deep neural network can potentially 
overcome FIB-SEM limitations and provide high resolution-large volume 3-D reconstruction. The previous 
works concentrated on relatively simple artificial neural networks (ANN), but convolutional neural 
networks (CNN) can effectively analyze the visual imagery. Recently, Hwang et al. demonstrated a 
segmentation of fuel cell microstructure by deep learning based on DeebLabV3+ algorithm (Hwang et al., 
2020). However, the achieved pixel-based accuracy was only 78%. Wu et al. (2019) demonstrated that the 
diffusivity of porous structure can be predicted from a 2-D image by CNN, but they did not provide the 
method to fabricate a 3-D model. Gayon-Lombardo et al. (2020) demonstrated the successful application of 
generative adversarial networks (GAN) to fabricate synthetic SOFC microstructures. Their result proved 
that GAN-based approach can be very effective, but the algorithm required the 3-D teaching data and could 
not fabricate microstructures with pre-defined properties. 

 

3. Application of machine learning methods for SOC microstructures 
 

Here, the strategy for improving the FIB-SEM measurements with machine learning methods is 
presented. All experimental microstructural samples are from the previously measured SOFC and SOEC 
cells. The proposed methods focus on three major points: (I) automated segmentation of multi-phase porous 
microstructures (II) improving resolution of microscopic images and (III) generating artificial 2-D and 3-D 
microstructures. 

 
3.1. Semantic segmentation 
 

A machine learning assisted image processing framework for the automatic segmentation of large 
datasets of raw FIB-SEM images was developed (Sciazko et al., 2021). The algorithm adopted a 
patch-based convolutional neural network (patch-CNN) in the encoder-decoder configuration as shown in 
Fig. 5. The proposed network was utilized for the segmentation of resin infiltrated cross-sectional images, 
which enabled reduction in processing time from days to hours with accuracy over 98%. The overall pixel 
accuracy, the numbers of training and total SEM images of various samples are shown in Table 1. 

The patch-CNN was extended for double-step U-net network for processing SEM data without resin 
infiltration (Sciazko et al., 2023). This algorithm was applied to investigate the 3D structures of the 
deposited carbon in the fuel electrode. Carbon deposition is considered to be one of important degradation 
mechanisms in SOFC system operated with hydrocarbon fuels. This first-of-its-kind work enabled to 
quantitatively evaluate the carbon deposition and its influence on degradation. An example of carbon 
deposition in Ni-GDC sample is shown in Fig. 6. 
 

Fig. 4  Limitations of FIB-SEM measurement. The 
lines indicate theoretical time dependence between 
resolution and reconstruction size (Xu et al., 2017). 
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Fig. 5  Schematic of patch-based semantic segmentation network in encoder-decoder configuration. 

 
Table 1  Accuracies and number of images of semantic segmentation networks trained for various microstructures 
(Sciazko et al., 2021).  

Sample Overall pixel 
accuracy, OP - 

SEM images Training images Number of 
training image / 

Total slices 
LSCM-GDC 5050 (1200oC) 0.971      601 9 0.015 
LSCM-GDC 50:50 (1100oC) 0.975 779 9 0.011 

Ni-GDC 0.982 980 97 0.099 

Ni-YSZ-AS Pore filling 0.969 934 3 0.003 
Ternarization 0.969 934 17 0.018 

 

 
Fig. 6  3D reconstruction of Ni-GDC microstructure; A) initial and B) after carbon deposition experiment. 

 
3.2. Super-resolution 

 
The voxel size in FIB-SEM reconstruction is determined by the SEM image resolution and FIB slicing 

pitch. To achieve high quality 3D reconstruction, it is necessary to set narrow FIB slicing pitch, which 
results in large number of captured SEM images and long measurement time. Here, a new method for 
artificially increasing the number of slices in FIB-SEM image stack is proposed by implementing 
asymmetric-resolution algorithm (Sciazko, Komatsu, Shimura, et al., 2021a). The residual deep neural 
network based on a modified VDSR architecture (Kim et al., 2016) is used to increase the resolution in the 
FIB slicing direction. The schematic illustration of VDSR network is shown in Fig. 7.  

An example of applying VDSR network in FIB-SEM data is shown in Fig. 8. The FIB slicing pitch of 
200 nm is 8 times larger than the SEM resolution of 25 nm. The VDSR network firstly learns the mapping 
between low- and high-resolution data based on the SEM images. Trained network is later applied to 
generate sub-images in the stacking direction. This mapping is possible because low- and high-resolution 
images have similar features, and the VDSR has to reproduce only the high-frequency details in a single 
direction. The proposed algorithm can significantly shorten the FIB-SEM measurement time or increase the 
measurement volume maintaining high resolution. 



JSME TED Newsletter, No.100, 2023 

- 12 - 

 
Fig. 7  Schematic of patch-based residual VDSR network (Sciazko, Komatsu, Shimura, et al., 2021a). 

 

 
Fig. 8  Comparison of microstructures between A) original anisotropic FIB-SEM with 25 × 25 × 200 nm resolution 
and B) VDSR microstructure with 25 × 25 × 25 nm resolution (Sciazko, Komatsu, Shimura, et al., 2021a). 
 
3.3 Artificial microstructures  
 

The generative machine learning can produce artificial structures with predefined statistical properties. 
Conventionally, generated structures belonged to the same class as the training data. For example, if 2-D 
images are used for training, the GAN network generates 2-D structures (GAN2D-2D) as shown in Fig. 9, 
and the network trained by 3-D data will provide 3-D structure (GAN3D-3D).  

Here, an new algorithm for generating 3-D structures from 2-D cross sectional SEM image as a training 
data (GAN2D-3D) is proposed as shown in Fig. 10 (Sciazko, Komatsu & Shikazono, 2021). The proposed 
GAN network is composed of a 3-D generator and a 2-D discriminator. Primarily, the model is designed for 
the isotropic structures as shown in Fig. 11A. Then, weak GAN2D-3D network was further developed for 
anisotropic materials enabling reconstructing electrode microstructures with electrolytes as shown in Fig. 
11B. Both visual quality and statistical characteristics of the artificial models are in very good agreement 
with the real data.   

 

 
Fig. 9  Structure of GAN2D-2D network (Sciazko, Komatsu & Shikazono, 2021). 
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Fig. 10  Structure of GAN2D-3D network (Sciazko, Komatsu, & Shikazono, 2021). 

 

 
Fig. 11  Reconstructed 3-D microstructures from 2-D cross sectional images by GAN2D-3D network: A) isotropic 
microstructure and B) microstructure with electrolyte (Sciazko, Komatsu & Shikazono, 2021). 

 

4. Summary and conclusion 
 

Coupling machine learning and FIB-SEM measurements makes it possible to reveal new properties of 
SOCs microstructures. In the present study, three types of algorithms are proposed, i.e. semantic 
segmentation of raw SEM data, super-resolution for improving resolution of FIB-SEM measurements and 
fabrication of artificial microstructures. These methods enable reduction in FIB-SEM measurement time by 
8 times and data post-processing time is reduced by a factor of hundred. In addition, it become possible to 
synthesize 3D microstructure directly from 2D cross sectional data. Here, applications of machine learning 
to FIB-SEM images are introduced. It is expected that machine learning will have more future applications 
such as degradation prediction. 
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