TED Plaza

熱駆動 MEMS アクチュエータの作り方

橋本 将明

慶應義塾大学 助教 理工学部システムデザイン工学科 hashimoto@sd.keio.ac.jp

1. はじめに

インクジェットプリンタからマイクロオプティクスに至るまで、MEMS (Micro Electro Mechanical Systems) アクチュエータは様々な分野に広く応用されている. MEMS アクチュエータ の原理として静電式,圧電式,電磁式.熱駆動式があげられるが,アクチュエータ開発の際には それぞれの長所と短所を考慮した上で特性を活かす設計が重要となる.他の駆動原理と比較して,熱駆動式は,数100 µm 程度の長ストロークを得られるという長所がある.筆者らは,これまで Si-MEMS 微細加工や4D プリンティングを用いた熱駆動 MEMS アクチュエータの開発に取り組ん できた.本稿では筆者らの研究を中心に熱駆動 MEMS アクチュエータの設計・作製方法について 紹介させて頂く.

熱駆動 MEMS アクチュエータの駆動原理を図1に示す. 熱駆動アクチュエータは, 熱バイモル フと呼ばれる熱膨張率の異なる2 層構造を可動部として全体が構成される. 熱バイモルフにはジ ュール加熱用のヒータが統合されていることが多く, ジュール加熱時の材料間の熱ひずみ差によ る湾曲によって変位を得る. 高熱膨張材料1と低熱膨張物質2で構成される片持ち梁構造の熱バ イモルフの温度が Δt 上昇した時, 曲率 k は熱膨張率 (a₁, a₂), ヤング率 (E₁, E₂), 材質厚み (t₁, t₂)の関数として (1) 式で表される. (1) 式からも分かるように, 設計の際にはまず熱膨張率と ヤング率を基準として材料の組み合わせを考える. また (1) 式では一様な温度分布を仮定してい るが, 実際には熱リーク等で不均一な温度分布となる. そのため, 熱伝導率や熱抵抗を考慮して 熱バイモルフ内の温度分布がアクチュエータ動作にどう影響するかも考慮する必要がある. 熱バ イモルフ材料の探索からデバイス全体の熱機械設計を行って初めて熱駆動 MEMS アクチュエー タは性能を発揮する.

$$k = \frac{6E_1E_2t_1t_2(t_1+t_2)(\alpha_1-\alpha_2)\Delta t}{\left(E_1t_1^2\right)^2 + \left(E_2t_2^2\right)^2 + 2E_1E_2t_1t_2(2t_1^2+3t_1t_2+2t_2^2)}$$
(1)

2. 半導体微細加工で作る熱駆動 Si-MEMS アクチュエータ

MEMS アクチュエータの1つの応用先として内視鏡分野が挙げられる.光バイオプシーと呼ば れる内視鏡下の光学診断を実現するために、長ストロークで低消費電力なレンズ・ミラーMEMS アクチュエータの開発が期待されている、熱駆動式は他の駆動方式と比較して、長ストロークを 得られることから.これまでに様々な熱駆動 MEMSアクチュエータが提案されている (Zhou, et al., 2019) (Wang, et al., 2019). (1) 式からも分かるように長ストロークを得るためには熱膨張率差が大 きい材料を組み合わせることが重要である.例として (Liu, et al., 2012) らは、高熱膨張率材のア ルミニウム薄膜と低熱膨張率材タングステン薄膜を組み合わせた熱バイモルフを用いて MEMS ミラーを開発し, 消費電力 275 mW で 227 µm のストロークが得られている. また (Wu, et al., 2010) らは、高熱膨張率材料のアルミニウム薄膜と低熱膨張率材料の酸化シリコン薄膜を組み合わせた 熱バイモルフを用いて MEMS アクチュエータを開発し, 880 μm もの長ストロークを印加電力 495 mW で達成している. どの熱駆動 MEMS アクチュエータも独自の構造設計となっており, 応答速 度や長期安定性などにそれぞれメリットを有する.しかし、長ストロークと低消費電力を両立さ せるためには熱バイモルフ材料の組み合わせや構造設計以外にも、MEMS アクチュエータ全体の 熱設計を考える必要がある.ストロークに寄与しない熱容量の大きいバルクサポート構造への熱 リークによって消費電力が増大するため、低消費電力駆動を達成するにはそれらの熱リークをい かに抑えるかが熱設計の1つのポイントとなる.

そこで筆者らは、図 2a に示すように、従来のアクチュエータ構造とは大きく異なる切り紙型の 熱駆動 MEMS アクチュエータを開発した (Hashimoto, et al., 2020). この切り紙型は, 熱容量の大 きなバルクサポート構造を排除して低消費電力化を図った上で、切り紙自立薄膜の立体的な機械 変形によって長ストロークを得る.この熱駆動切り紙 MEMS アクチュエータは,高熱膨張率材料 のニクロム (NiCr) 薄膜と低熱膨張率材料の窒化シリコン (SiN) 薄膜を組み合わせた熱バイモル フを用いている.図 2b にアクチュエータの構成を示す.微細加工で切り込みをいれた低熱膨張材 の SiN 自立薄膜 (厚み 1.0 µm) に, 低熱膨張材の NiCr (厚み 0.5 µm) が選択的にパターンされてい る. またすべての NiCr パターンはタングステン (W) パターンで電気的に接続されており、この NiCr・W パターンがジュール加熱用電気回路としても機能する. Si-MEMS 微細加工で作製される 熱駆動 MEMS アクチュエータは、スパッタ法・プラズマ化学気相成長法・ウェットエッチング・ ドライエッチングといった表面微細加工とSi深堀りエッチングといったバルク微細加工を組み合 わせて作製される.ナノ薄膜で構成される熱バイモルフを作製するためには、特に薄膜の残留応 力制御が重要となる.高残留応力状態の薄膜で熱バイモルフを構成すると、微細加工中にデバイ スが破損したり、アクチュエータの初期変位が大きくなる. 作製プロセスの具体例として、熱駆 動切り紙 MEMS アクチュエータの微細加工プロセスを図 2c に示す. 最初に Si 基板にプラズマ化 学気相成長法を用いて圧縮応力 30 MPa の SiO2 膜 (厚み 0.2 µm) と圧縮応力 25 MPa の SiN 膜 (厚 み 1.0 µm) を成膜する. 次に, リフトオフプロセスで W ヒータをパターン (厚み 0.2 µm) した後, 引張応力 180 MPa の NiCr (厚み 0.5 μm) 薄膜をスパッタ法とウェットエッチングを用いてパター ンする.NiCr パターンの残留応力に関しては、スパッタ圧力を調整することで180 MPa の引張応 力値まで低減している.フォトレジストでマスクした後,SiN 膜を反応性イオンでエッチングす ることで切り紙薄膜を作製する.そして、Si 基板を反応性イオンで深堀りエッチングした後に、 SiO2 膜を気相フッ化水素酸エッチングすることで熱バイモルフ構造を有する切り紙自立薄膜構造 を形成する.図 2d に作製した熱駆動切り紙 MEMS アクチュエータの走査型電子顕微鏡画像を示 す. 残留応力制御によって, 垂直方向の初期変位は 20 µm, 初期傾きは, 約 0.6 度に抑制されてい た. また NiCr・W パターンで構成されるジュール加熱用電気回路は、SiN 切り紙自立薄膜上に断 線なくパターンされており, 電気抵抗値は室温で 4.6 kΩ であった. 駆動評価テストにて, 図 2e に示すように、消費電力 130 mW で垂直方向変位 200 µm が得られた.また応答性に関しては、図 2f に示すように、カットオフ周波数が約 20 Hz であった. これらの結果より、熱駆動切り紙 MEMS アクチュエータの作製に初めて成功し、長ストローク 0.2 mm を達成することができた.

先に述べたように、熱バイモルフをジュール加熱した際、熱容量の大きな構造への熱リークが 消費電力を増大させる.しかし、熱リークを抑制しつつミリ長ストロークを得ることは熱機械設 計的に難しく、これまで1.0 mm 以上のミリ長ストロークを100 mW 程度の低消費電力で達成する 熱駆動 MEMS アクチュエータは、筆者の知る限り開発されていなかった.そこで筆者らは、光

Fig. 2 Electrothermal Si-MEMS actuator fabricated by surface and bulk micromachining: (a) Paper model of kirigami actuator, (b) Design of kirigami actuator, (c) Fabrication flow, (d) SEM images of kirigami actuator, (e) Static response, (f) Frequency response. (Hashimoto, et al., 2020)

バイオプシーと呼ばれる内視鏡下光診断を応用先として、従来 MEMS アクチュエータでは未踏の ミリ長ストロークを低消費電力で達成するレンズ MEMS アクチュエータを開発した (Hashimoto, et al., 2020). 図3 に開発したミリ長ストローク・低消費電力熱駆動切り紙 MEMS アクチュエー タの概要を示す. ミリ長ストロークを低消費電力で達成するため、直径4 mm の切り紙 SiN 自立 薄膜に NiCr 薄膜パターンを高密度に集積したデバイスを設計・作製した (図 3a, 図 3b, 図 3c). まずデバイス熱応答について、図 3d に示すようにアクチュエータの熱応答をサーモグラフィで可 視化した. 熱駆動切り紙 MEMS アクチュエータの集中定数モデルを構築し、サーモグラフィで観 察したこれらの動的熱応答を解析することで熱伝導による熱バイモルフ領域外への熱リーク量は 小さく,空気中への熱輸送が支配的であることを実験的に明らかにした(橋本ほか,2020).次に デバイス機械応答について,図3eに示すように作製したアクチュエータは4層ピラミッド状に機 械変形することが確認された.作製したアクチュエータにマイクロレンズをアセンブリした時の 消費電力と変位の関係を図3fに示す.図3fより,ミリ長ストローク1.1 mmを低電力128 mWで 達成する熱駆動切り紙 MEMS レンズスキャナの開発に成功した.

Fig. 3 Circular pyramidal kirigami MEMS actuator with millimeter-range low-power lens drive: (a) Design concept, (b) Design of kirigami actuator, (c) Microscopic image of fabricated actuator, (d) DC temperature response, (e) Demonstration of circular pyramidal out-of-plane actuation, (f) Static mechanical response. (Hashimoto, et al., 2020)

3. 4D プリンティングで作る熱駆動 Polymer-MEMS アクチュエータ

材料間の熱膨張率差によって変位する熱駆動 MEMS アクチュエータは、一般的に図 2c に示す ような Si-MEMS 微細加工技術を用いてこれまで開発されてきた. ここでいう Si-MEMS 微細加工 技術とは、フォトリソグラフィや薄膜成膜を用いる表面・バルク微細加工のことを指す. これら 表面・バルク微細加工で作製される熱駆動 Si-MEMS アクチュエータは基本的に2次元形状となる. そのため、図 3e に示すように「いかに平面構造からアクチュエートして立体構造をうみだすか」 という設計思想でアクチュエータは設計される. マイクロロボティクス等の多自由度運動を必要 とする分野へ熱駆動 MEMS アクチュエータを今後応用していくためには、アクチュエータの設計 形状自由度を 2 次元から 3 次元へと拡張させる必要がある. 近年、印刷構造物が外部刺激によっ て時間的に機械変形するという意味で、4D (3D 構造+時間) プリンティングという新しいモノづ くり概念が提唱された. 実際に光や湿度といった外部刺激によって機械変形する様々な 4D プリ ンティングデバイスが開発されている (Gastaldi, et al., 2023).

そこで筆者らは,図4に示すように3次元熱駆動 MEMS アクチュエータの新しい作製方法として,4Dプリンティングをベースにしたアディティブ加工を提案した (Hashimoto, et al., 2023).

Fig. 4 Electrothermal polymer-MEMS actuator fabricated by 4D printing: (a) Conceptual illustration of the additive manufacturing method, (b) Fabrication results, (c) Temperature rise by Joule heating, (d) Electrothermal actuation, (e) Cycling test. (Hashimoto, et al., 2023)

作製プロセスを図 4a に示す. 作製ステップ1として、フェムト秒レーザ強度を印刷中に変化させ る光造形 4D マイクロプリンティングを用い,3次元構造の樹脂性熱バイモルフを造形する.フェ ムト秒レーザ強度を低くした場合、光硬化樹脂の重合度が低くなるため、熱膨張率の高い構造が 印刷される. 逆にフェムト秒レーザ強度を高くした場合, 光硬化樹脂の重合度が高くなるため, 熱膨張率の低い構造が印刷される.2 光子吸収を利用することで数ミクロンスケールの高空間分 解能で3次元樹脂性熱バイモルフ構造を印刷することができる.そして作製ステップ2として, 熱バイモルフ内部に設けたマイクロ流路に液体金属ガリンスタンを圧送することでジュール加熱 用の電気回路を形成する.提案手法の妥当性を示すため、図4bに示すように、螺旋形状の熱駆動 回転 MEMS アクチュエータを設計・作製した. 電圧印加時のアクチュエータを赤外カメラで側面 から観察したところ,図4cに示すようにジュール加熱によってアクチュエータ温度が上昇してい ることが分かった、次に、ジュール加熱時のアクチュエータの機械変形を光学顕微鏡で上面から 観察したところ、図 4d に示すように、ジュール加熱によってアクチュエータの回転運動が観察さ れた.これらの光学顕微鏡画像から回転角度を算出し、繰り返し駆動を検証した結果を図4eに示 す. これらの結果から平面2次元構造となる熱駆動 Si-MEMS アクチュエータでは得られない大き な回転運動が得られることが分かり、熱駆動 MEMS アクチュエータの新規作製方法として、提案 手法の妥当性が示された.これらの結果は、4D プリンティングによって熱駆動 MEMS アクチュ エータの設計自由度を3次元へと拡張可能であることを示唆しており、ソフトロボティクス等へ の展開が期待される.

4. おわりに

本稿では、筆者らの研究を中心に熱駆動 MEMS アクチュエータの設計・作製について紹介させ て頂いた. 微細加工の発展に伴い、今まで作製困難であった複雑かつ機能的な熱駆動 MEMS アク チュエータの開発が可能になってきている. 今後も新しい熱駆動 MEMS アクチュエータの設計・ 作製からそれらの実用化まで取り組んでいきたいと考えている.

謝辞

本研究は日本学術振興会科学研究費特別研究員奨励費 (No. 18J20513) の助成を受けて実施された. また本研究の一部は, JST, ACT-X Grant Number JPMJAX21KF, Japan により支援された. デバイスの作製にあたっては, 4 大学ナノ・マイクロファブリケーションコンソーシアムおよび川崎市ナノ・マイクロ産学共同研究開発補助金の支援を受けた.

文献

- Gastaldi, M., Spiegel, C.A., Vazquez-Martel, C., Barolo, C., Roppolo, I., Blasco, E., 4D printing of light activated shape memory polymers with organic dyes, Molecular Systems Design & Engineering, Vol.8, No.3 (2023), pp.323–329.
- Hashimoto, M., Taguchi, Y., Design and fabrication of a kirigami-inspired electrothermal MEMS scanner with large displacement, Micromachines, Vol.11, No.4 (2020), 362.
- Hashimoto, M., Taguchi, Y., Circular pyramidal kirigami microscanner with millimeter-range low-power lens drive, Optics Express, Vol. 28, No.12 (2020), pp.17457-17467.
- 橋本将明,田口良広, "ミリ長ストローク・低電力熱駆動切り紙 MEMS アクチュエータの開発— 薄膜バイモルフの熱・機械応答特性—",熱物性, Vol.34, No.4 (2020), pp.109-116.
- Hashimoto, M., Sato, T., Taguchi, Y., Additive manufacturing method of electrothermal 4D bimorph microactuator, Sensors and Actuators: A. Physical, Vol.356 (2023), 114348.
- Liu, L., Pal, S., Xie, H., MEMS mirrors based on a curved concentric electrothermal actuator, Sensors and actuators: A. Physical, Vol. 188 (2012), pp.349-358.
- Wang, P., Liu, Y., Wang, D., Liu, H., Liu, W., Xie, H., Stability study of an electrothermally-actuated MEMS mirror with Al/SiO2 bimorphs", Micromachines, Vol.10, No.10 (2019), 693.
- Wu, L., Xie, H., A millimeter-tunable-range microlens for endoscopic biomedical imaging applications, IEEE Journal of Quantum Electronics, Vol. 46, No.9 (2010), pp.1237-1244.
- Zhou, L., Zhang, X., Xie, H., An electrothermal Cu/W bimorph tip-tilt-piston mems mirror with high reliability, Micromachines, Vol.10, No.5 (2019), 323.