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1. INTRODUCTION: 

The objective of present study is to present solution to determine the stress and displacement 

fields around an interface edge of material joint formed by quarter planes in which materials 

behaves as an elastic and a power-law hardening material. On the interface, a separable form 

solutions of stress,  1

ij r f  , gives
 
stress continuity but, due to the dissimilarity of power of 

r the displacement does not become continuous. Recently, many researchers have investigated 

the elastic-plastic stress singularity of an interface crack between two bonded power law 

hardening materials.In order to satisfy both the continuous conditions of the traction and the 

displacement at the interface edge, Duva[1], Rahman[2] and Reedy[3] modelized the  

elastic/power-law hardening plastic materials joint as a power law hardening plastic material on 

a rigid substrate.They conducted the asymptotic analysis similar to the nonlinear crack problem 

developed by Hutchinson[4].In other study, Liton et al.[5] studied experimentally and 

numerically the characteristics of singular fields around an interface edge between ceramic/metal 

joint.  

In the present study, governing differential equation obtained from compatibility condition is 

solved theoretically to satisfy the continuity of displacement and the balance of force on the 

interface between an elastic material and a power-law hardening materials joint. In order to 

satisfy both the continuity condition of stresses and displacements on the interface, the 

successive functions as eigenfunction expansion method has been used.  

2. BOUNDARY CONDITIONS AND  METHOD OF SOLUTION: 

The boundary condition can be expressed as follows in the polar coordinate system located on 

the interface edge for elastic/power-law hardening materials joint, 
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The stresses and displacements of power-law hardening material are reffered to with a 

superscript “I” while those of the elastic material, with a superscript “II”. In the zero-th order 

approximation, the power-law hardening material of the elastic/power-law hardening materials 

joint is considered as a power-law hardening material on a rigid substrate. The stress fields in the 

elastic material can be described by the fields of an elastic wedge which is subjected to 

distributed tractions along the one edge. The magnitudes of the tractions are the same as the 

stress distributions along the rigid/power-law interface. In the first order approximation, the 

power-law hardening material having the initial fields are subjected to a forced displacement 

which is the field on the edge of elastic material of the zero-th order approximation was 

considered. The increase of stress fields in the elastic material can be described by the fields of 

an elastic wedge which is subjected to distributed tractions along the one edge. The magnitudes 

of the traction are the same as the stress distributions along the power-law material wedge. 

As the joint material model of elastic/power-law hardening materials joint, joint of elastic and 

elastic-plastic plate was considered for the simulation in FEM, where uniform tension load was 

applied as the external load on the one edge of the joint plate. Stress-strain relations used in the 

elastic-plastic side is 13
2

I n I

ij e ijs    and elastic side is   1
III II II II II II

IIij ij kk ij
E
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where i , j and k  are used for subscript indicates ,r  . E is Young’s modulus,   is the Poisson’s 

ratio, ij  is the two dimensional Kronecker delta symbol,  and n  are hardening coefficient and 

hardening exponent, respectively. e is the effective stress and 
ijs is the stress deviator. Stress and 

strain quantities are normalized by yield stress or corresponding yield strain. An asymptotic 

expansion of the Airy stress function in a separable form is assumed 
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   as 0,r  where 0 1....  and k I for power-law hardening 

material and k II for elastic material. 0A and 
1A are the stress intensity factor of zero-th and first 

order approximation, respectively. In the higher order approximation  1i  , nonlinear effective 

stress term 1n

e
 was expanded by Taylor series expansion method and the first two terms were 

considered for further calculations. 
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where,      2 2 2 2 2 2
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After expansion and neglecting the higher order term of
1A the equation becomes, 
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Compatibility equation becomes in the form of , 
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 (1) 

Equation (1) is the fourth-order ordinary differential equation. The governing differential 

equation and boundary conditions define an eigenvalue problem. A fourth-order Runge-Kutta 

method and the shooting method were used to solve the problem. 

3. RESULTS: 

In the zero-th order approximation, from the solution of differential equation of the power-law 

hardening material side  the singular exponent, 0 is calculated for different power-law 

hardening exponent, n. Displacement of Elastic material side from the zero-th order 

approximation is applied as the forced displacement to the power-law hardening material side in 

the first order approximation. Due to the forced displacement on the interface, displacement of 

first order approximation in the power law material side should be the same as the displacement 

of zero-th order approximation in the elastic material side. 

 

           
Figure 1:Graphical form of stress singularity 1i  with n. 



The iterative boundary condition can be expressed on the interface as,
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ru and u are the angular function terms.
 

To satisfy the boundary condition
 
on the interface the power of r should be equal. Equating the 

power of r we have, 0 0 0 1 1n n        or   1 0 01 1n      .Similarly, to satisfy the 

boundary condition on the interface in the higher order approximation the singular exponent can 

be expressed as:   0 01 1i i n       . It seems the i-th order singularity is depends on 

hardening exponent n and zero-th order singularity 0 . 

Figure 1 shows the relation between the order of singularity, 1   and power law hardening 

exponent, n . As the hardening exponent in the power law hardening material is increased the 

order of the singularity tends to increase which means the absolute value of the order of 

singularity 1   tends to decrease. 

4. CONCLUSIONS: 

Singurar fields on the interface edge of elastic and power-law hardening materials joint were 

studied with different strain hardening exponent.The power of r in the stress equation depends on 

the hardening exponent n. Two stress singular terms exist in the first order approximation for 

n<2.0. The power of the first order singular term, 1 1  , decreased with increasing n. 
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